AMR parsing as graph prediction with latent alignment

Chunchuan Lyu, Ivan Titov

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

99 Citations (Scopus)

Abstract

meaning representations (AMRs) are broad-coverage sentence-level semantic representations. AMRs represent sentences as rooted labeled directed acyclic graphs. AMR parsing is challenging partly due to the lack of annotated alignments between nodes in the graphs and words in the corresponding sentences. We introduce a neural parser which treats alignments as latent variables within a joint probabilistic model of concepts, relations and alignments. As exact inference requires marginalizing over alignments and is infeasible, we use the variational autoencoding framework and a continuous relaxation of the discrete alignments. We show that joint modeling is preferable to using a pipeline of align and parse. The parser achieves the best reported results on the standard benchmark (74.4% on LDC2016E25).

Original languageEnglish
Title of host publicationACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
PublisherAssociation for Computational Linguistics (ACL)
Pages397-407
Number of pages11
ISBN (Electronic)9781948087322
DOIs
Publication statusPublished - 2018
Externally publishedYes
Event56th Annual Meeting of the Association for Computational Linguistics, ACL 2018 - Melbourne, Australia
Duration: 15 Jul 201820 Jul 2018

Publication series

NameACL 2018 - 56th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
Volume1

Conference

Conference56th Annual Meeting of the Association for Computational Linguistics, ACL 2018
Country/TerritoryAustralia
CityMelbourne
Period15/07/1820/07/18

Fingerprint

Dive into the research topics of 'AMR parsing as graph prediction with latent alignment'. Together they form a unique fingerprint.

Cite this