TY - GEN
T1 - Advancing Air Quality Monitoring
T2 - 2nd International Conference on Intelligent Manufacturing and Robotics, ICIMR 2024
AU - Ken, Huam Ming
AU - Behjati, Mehran
AU - Rafsanjani, Ahmad Sahban
AU - Aslam, Saad
AU - Meng, Yap Kian
AU - PP Abdul Majeed, Anwar
AU - Zheng, Yufan
N1 - Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025.
PY - 2025
Y1 - 2025
N2 - The escalation of urban air pollution necessitates innovative solutions for real-time air quality monitoring and prediction. This paper introduces a novel TinyML-based system designed to predict ozone concentration in real-time. The system employs an Arduino Nano 33 BLE Sense microcontroller equipped with an MQ7 sensor for carbon monoxide (CO) detection and built-in sensors for temperature and pressure measurements. The data, sourced from a Kaggle dataset on air quality parameters from India, underwent thorough cleaning and preprocessing. Model training and evaluation were performed using Edge Impulse, considering various combinations of input parameters (CO, temperature, and pressure). The optimal model, incorporating all three variables, achieved a mean squared error (MSE) of 0.03 and an R-squared value of 0.95, indicating high predictive accuracy. The regression model was deployed on the microcontroller via the Arduino IDE, showcasing robust real-time performance. Sensitivity analysis identified CO levels as the most critical predictor of ozone concentration, followed by pressure and temperature. The system’s low-cost and low-power design makes it suitable for widespread implementation, particularly in resource-constrained settings. This TinyML approach provides precise real-time predictions of ozone levels, enabling prompt responses to pollution events and enhancing public health protection.
AB - The escalation of urban air pollution necessitates innovative solutions for real-time air quality monitoring and prediction. This paper introduces a novel TinyML-based system designed to predict ozone concentration in real-time. The system employs an Arduino Nano 33 BLE Sense microcontroller equipped with an MQ7 sensor for carbon monoxide (CO) detection and built-in sensors for temperature and pressure measurements. The data, sourced from a Kaggle dataset on air quality parameters from India, underwent thorough cleaning and preprocessing. Model training and evaluation were performed using Edge Impulse, considering various combinations of input parameters (CO, temperature, and pressure). The optimal model, incorporating all three variables, achieved a mean squared error (MSE) of 0.03 and an R-squared value of 0.95, indicating high predictive accuracy. The regression model was deployed on the microcontroller via the Arduino IDE, showcasing robust real-time performance. Sensitivity analysis identified CO levels as the most critical predictor of ozone concentration, followed by pressure and temperature. The system’s low-cost and low-power design makes it suitable for widespread implementation, particularly in resource-constrained settings. This TinyML approach provides precise real-time predictions of ozone levels, enabling prompt responses to pollution events and enhancing public health protection.
KW - Air Quality
KW - edge intelligence
KW - Environmental Monitoring
KW - Machine Learning
KW - Ozone concentration
KW - TinyML
UR - http://www.scopus.com/inward/record.url?scp=105002711433&partnerID=8YFLogxK
U2 - 10.1007/978-981-96-3949-6_42
DO - 10.1007/978-981-96-3949-6_42
M3 - Conference Proceeding
AN - SCOPUS:105002711433
SN - 9789819639489
T3 - Lecture Notes in Networks and Systems
SP - 502
EP - 512
BT - Selected Proceedings from the 2nd International Conference on Intelligent Manufacturing and Robotics, ICIMR 2024 - Advances in Intelligent Manufacturing and Robotics
A2 - Chen, Wei
A2 - Ping Tan, Andrew Huey
A2 - Luo, Yang
A2 - Huang, Long
A2 - Zhu, Yuyi
A2 - PP Abdul Majeed, Anwar
A2 - Zhang, Fan
A2 - Yan, Yuyao
A2 - Liu, Chenguang
PB - Springer Science and Business Media Deutschland GmbH
Y2 - 22 August 2024 through 23 August 2024
ER -