AdaD-FNN for Chest CT-Based COVID-19 Diagnosis

Xujing Yao, Ziquan Zhu, Cheng Kang, Shui Hua Wang, Juan Manuel Gorriz, Yu Dong Zhang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

Coronavirus disease 2019 (COVID-19) generated a global public health emergency since December 2019, causing huge economic losses. To help radiologists strengthen their recognition of COVID-19 cases, we developed a computer-aided diagnosis system based on deep learning to automatically classify chest computed tomography-based COVID-19, Tuberculosis, and healthy control subjects. Our novel classification model AdaD-FNN sequentially transfers the trained knowledge of an FNN estimator to the next FNN estimator while updating the weights of the samples in the training set with a decaying learning rate. This model inhibits the network from remembering the noisy information and improves the learning of complex patterns in the hard-to-identify samples. Moreover, we designed a novel image preprocessing model F-U2MNet-C by enhancing the image features using fuzzy stacking and eliminating the interference factors using U2MNet segmentation. Extensive experiments are conducted on four publicly available datasets namely, TLDCA, UCSD-Al4H, SARS-CoV-2, TCIA, and the obtained classification accuracies are 99.52%, 92.96%, 97.86%, 91.97%. Our novel system gives out compelling performance for assisting COVID-19 detection when compared with 22 state-of-the-art methods. We hope to help link together biomedical research and artificial intelligence and to assist the diagnosis of doctors, radiologists, and inspectors at each epidemic prevention site in the real world.

Original languageEnglish
Pages (from-to)5-14
Number of pages10
JournalIEEE Transactions on Emerging Topics in Computational Intelligence
Volume7
Issue number1
DOIs
Publication statusPublished - 1 Feb 2023
Externally publishedYes

Keywords

  • COVID-19
  • convolutional neural network
  • deep learning
  • ensemble models
  • fractional pooling
  • transfer learning

Fingerprint

Dive into the research topics of 'AdaD-FNN for Chest CT-Based COVID-19 Diagnosis'. Together they form a unique fingerprint.

Cite this