TY - JOUR
T1 - A Simons-type Integral Inequality for Minimal Surfaces with Constant Kähler Angle in Complex Projective Spaces
AU - Fei, Jie
AU - Jiao, Xiaoxiang
AU - Wang, Jun
N1 - Publisher Copyright:
© Peking University 2024.
PY - 2024
Y1 - 2024
N2 - In this paper, we establish a Simons-type integral inequality for minimal surfaces with constant Kähler angle in complex projective spaces, and we determine all the closed minimal surfaces with the square norm of the second fundamental form satisfying a pinching condition.
AB - In this paper, we establish a Simons-type integral inequality for minimal surfaces with constant Kähler angle in complex projective spaces, and we determine all the closed minimal surfaces with the square norm of the second fundamental form satisfying a pinching condition.
KW - Complex projective spaces
KW - constant Kähler angle
KW - minimal surfaces
KW - pinching
KW - the second fundamental form
UR - http://www.scopus.com/inward/record.url?scp=85196858301&partnerID=8YFLogxK
U2 - 10.1007/s11464-022-0291-z
DO - 10.1007/s11464-022-0291-z
M3 - Article
AN - SCOPUS:85196858301
SN - 2731-8648
VL - 19
SP - 1007
EP - 1024
JO - Frontiers of Mathematics
JF - Frontiers of Mathematics
IS - 6
ER -