Abstract
Background
One of the key technologies for future large-scale location-aware services covering a complex of multi-story buildings is a scalable indoor localization technique. In this paper, we report the current status of our investigation on the use of deep neural networks (DNNs) for the scalable building/floor classification and floor-level position estimation based on Wi-Fi fingerprinting. Exploiting the hierarchical nature of the building/floor estimation and floor-level coordinates estimation of a location, we propose a new DNN architecture consisting of a stacked autoencoder for the reduction of feature space dimension and a feed-forward classifier for multi-label classification of building/floor/location, on which the multi-building and multi-floor indoor localization system based on Wi-Fi fingerprinting is built.
Results
We evaluate the performance of building/floor estimation and floor-level coordinates estimation of a given location using the UJIIndoorLoc dataset covering three buildings with four or five floors in the Jaume I University (UJI) campus, Spain. Experimental results demonstrate the feasibility of the proposed DNN-based indoor localization system, which can provide near state-of-the-art performance using a single DNN.
Conclusions
The proposed scalable DNN architecture for multi-building and multi-floor indoor localization based on Wi-Fi fingerprinting can achieve near state-of-the-art performance with just a single DNN and enables the implementation with lower complexity and energy consumption at mobile devices.
One of the key technologies for future large-scale location-aware services covering a complex of multi-story buildings is a scalable indoor localization technique. In this paper, we report the current status of our investigation on the use of deep neural networks (DNNs) for the scalable building/floor classification and floor-level position estimation based on Wi-Fi fingerprinting. Exploiting the hierarchical nature of the building/floor estimation and floor-level coordinates estimation of a location, we propose a new DNN architecture consisting of a stacked autoencoder for the reduction of feature space dimension and a feed-forward classifier for multi-label classification of building/floor/location, on which the multi-building and multi-floor indoor localization system based on Wi-Fi fingerprinting is built.
Results
We evaluate the performance of building/floor estimation and floor-level coordinates estimation of a given location using the UJIIndoorLoc dataset covering three buildings with four or five floors in the Jaume I University (UJI) campus, Spain. Experimental results demonstrate the feasibility of the proposed DNN-based indoor localization system, which can provide near state-of-the-art performance using a single DNN.
Conclusions
The proposed scalable DNN architecture for multi-building and multi-floor indoor localization based on Wi-Fi fingerprinting can achieve near state-of-the-art performance with just a single DNN and enables the implementation with lower complexity and energy consumption at mobile devices.
Original language | English |
---|---|
Article number | 4 |
Pages (from-to) | 1--17 |
Number of pages | 17 |
Journal | Big Data Analytics |
Volume | 3 |
Issue number | 4 |
DOIs | |
Publication status | Published - 19 Apr 2018 |