TY - GEN
T1 - A novel gait recognition analysis system based on body sensor networks for patients with Parkinson's disease
AU - Li, Shancang
AU - Wang, Jue
AU - Wang, Xinheng
PY - 2010
Y1 - 2010
N2 - Gait analysis of human plays a significant role in maintaining the well-being of our mobility and healthcare, and it can be used for various e-healthcare systems for fast medical prognosis and diagnosis. In this paper we have developed a novel body sensor network based recognition system to identify the specific gait pattern of Parkinson's disease (PD). Firstly, a BSN with 16 nodes is used to acquire the gait information from the PD patients. Then, an algorithm is developed based on local linear embedding (LLE) to extract and recognize the gait features. Experiments demonstrate the effectiveness of proposed scheme. The results show that the proposed scheme has a recognition rate of about 95:57% for gait patterns of PD, which is higher than the conventional PCA feature extraction method. The proposed system can identify PD patients from normal people and by their gait map with high reliability and appears a promising aid in the diagnosis of the Parkinson's disease.
AB - Gait analysis of human plays a significant role in maintaining the well-being of our mobility and healthcare, and it can be used for various e-healthcare systems for fast medical prognosis and diagnosis. In this paper we have developed a novel body sensor network based recognition system to identify the specific gait pattern of Parkinson's disease (PD). Firstly, a BSN with 16 nodes is used to acquire the gait information from the PD patients. Then, an algorithm is developed based on local linear embedding (LLE) to extract and recognize the gait features. Experiments demonstrate the effectiveness of proposed scheme. The results show that the proposed scheme has a recognition rate of about 95:57% for gait patterns of PD, which is higher than the conventional PCA feature extraction method. The proposed system can identify PD patients from normal people and by their gait map with high reliability and appears a promising aid in the diagnosis of the Parkinson's disease.
UR - http://www.scopus.com/inward/record.url?scp=79951893568&partnerID=8YFLogxK
U2 - 10.1109/GLOCOMW.2010.5700321
DO - 10.1109/GLOCOMW.2010.5700321
M3 - Conference Proceeding
AN - SCOPUS:79951893568
SN - 9781424488650
T3 - 2010 IEEE Globecom Workshops, GC'10
SP - 256
EP - 260
BT - 2010 IEEE Globecom Workshops, GC'10
PB - IEEE Computer Society
T2 - 2010 IEEE Globecom Workshops, GC 2010
Y2 - 5 December 2010 through 10 December 2010
ER -