TY - JOUR
T1 - A neural network enhanced volatility component model
AU - Zhai, Jia
AU - Cao, Yi
AU - Liu, Xiaoquan
N1 - Publisher Copyright:
© 2020, © 2020 Informa UK Limited, trading as Taylor & Francis Group.
PY - 2020/5/3
Y1 - 2020/5/3
N2 - Volatility prediction, a central issue in financial econometrics, attracts increasing attention in the data science literature as advances in computational methods enable us to develop models with great forecasting precision. In this paper, we draw upon both strands of the literature and develop a novel two-component volatility model. The realized volatility is decomposed by a nonparametric filter into long- and short-run components, which are modeled by an artificial neural network and an ARMA process, respectively. We use intraday data on four major exchange rates and a Chinese stock index to construct daily realized volatility and perform out-of-sample evaluation of volatility forecasts generated by our model and well-established alternatives. Empirical results show that our model outperforms alternative models across all statistical metrics and over different forecasting horizons. Furthermore, volatility forecasts from our model offer economic gain to a mean-variance utility investor with higher portfolio returns and Sharpe ratio.
AB - Volatility prediction, a central issue in financial econometrics, attracts increasing attention in the data science literature as advances in computational methods enable us to develop models with great forecasting precision. In this paper, we draw upon both strands of the literature and develop a novel two-component volatility model. The realized volatility is decomposed by a nonparametric filter into long- and short-run components, which are modeled by an artificial neural network and an ARMA process, respectively. We use intraday data on four major exchange rates and a Chinese stock index to construct daily realized volatility and perform out-of-sample evaluation of volatility forecasts generated by our model and well-established alternatives. Empirical results show that our model outperforms alternative models across all statistical metrics and over different forecasting horizons. Furthermore, volatility forecasts from our model offer economic gain to a mean-variance utility investor with higher portfolio returns and Sharpe ratio.
KW - ARMA process
KW - Exchange rates
KW - Volatility prediction
KW - Wavelet analysis
UR - http://www.scopus.com/inward/record.url?scp=85079814654&partnerID=8YFLogxK
U2 - 10.1080/14697688.2019.1711148
DO - 10.1080/14697688.2019.1711148
M3 - Article
AN - SCOPUS:85079814654
SN - 1469-7688
VL - 20
SP - 783
EP - 797
JO - Quantitative Finance
JF - Quantitative Finance
IS - 5
ER -