TY - GEN
T1 - A Monte-Carlo ant colony system for scheduling multi-mode projects with uncertainties to optimize cash flows
AU - Chen, Wei Neng
AU - Zhang, Jun
AU - Liu, Ou
AU - Liu, Hai Lin
PY - 2010
Y1 - 2010
N2 - Project scheduling under uncertainty is a challenging field of research that has attracted an increasing attention in recent years. While most existing studies only considered the classical single-mode project scheduling problem with makespan criterion under uncertainty, this paper aims to deal with a more realistic and complicated model called the stochastic multi-mode resource constrained project scheduling problem with discounted cash flows (S-MRCPSPDCF). In the model, uncertainty is sourced from activity durations and costs, which are given by random variables. The objective is to find an optimal baseline schedule so that the project's expected net present value (NPV) of cash flows is maximized. In order to solve this intractable problem, an ant colony system (ACS) algorithm is designed. The algorithm dispatches a group of ants to build baseline schedules iteratively based on pheromones and an expected discounted cost (EDC) heuristic. In addition, because it is impossible to evaluate the expected NPVs of baseline schedules directly due to the presence of random variables, the algorithm adopts Monte Carlo (MC) simulations to evaluate the performance of baseline schedules. Experimental results on 33 instances demonstrate the effectiveness of the proposed scheduling model and the ACS approach.
AB - Project scheduling under uncertainty is a challenging field of research that has attracted an increasing attention in recent years. While most existing studies only considered the classical single-mode project scheduling problem with makespan criterion under uncertainty, this paper aims to deal with a more realistic and complicated model called the stochastic multi-mode resource constrained project scheduling problem with discounted cash flows (S-MRCPSPDCF). In the model, uncertainty is sourced from activity durations and costs, which are given by random variables. The objective is to find an optimal baseline schedule so that the project's expected net present value (NPV) of cash flows is maximized. In order to solve this intractable problem, an ant colony system (ACS) algorithm is designed. The algorithm dispatches a group of ants to build baseline schedules iteratively based on pheromones and an expected discounted cost (EDC) heuristic. In addition, because it is impossible to evaluate the expected NPVs of baseline schedules directly due to the presence of random variables, the algorithm adopts Monte Carlo (MC) simulations to evaluate the performance of baseline schedules. Experimental results on 33 instances demonstrate the effectiveness of the proposed scheduling model and the ACS approach.
KW - ant colony optimization (ACO)
KW - ant colony system (ACS)
KW - cash flow
KW - optimization under uncertainty
KW - project scheduling
UR - http://www.scopus.com/inward/record.url?scp=79959431678&partnerID=8YFLogxK
U2 - 10.1109/CEC.2010.5586125
DO - 10.1109/CEC.2010.5586125
M3 - Conference Proceeding
AN - SCOPUS:79959431678
SN - 9781424469109
T3 - 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010
BT - 2010 IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010
T2 - 2010 6th IEEE World Congress on Computational Intelligence, WCCI 2010 - 2010 IEEE Congress on Evolutionary Computation, CEC 2010
Y2 - 18 July 2010 through 23 July 2010
ER -