TY - JOUR
T1 - A complete characterisation of local existence for semilinear heat equations in Lebesgue spaces
AU - Laister, R.
AU - Robinson, J. C.
AU - Sierżęga, M.
AU - Vidal-López, A.
N1 - Publisher Copyright:
© 2015 Elsevier Masson SAS
PY - 2016/11/1
Y1 - 2016/11/1
N2 - We consider the scalar semilinear heat equation ut−Δu=f(u), where f:[0,∞)→[0,∞) is continuous and non-decreasing but need not be convex. We completely characterise those functions f for which the equation has a local solution bounded in Lq(Ω) for all non-negative initial data u0∈Lq(Ω), when Ω⊂Rd is a bounded domain with Dirichlet boundary conditions. For q∈(1,∞) this holds if and only if limsups→∞s−(1+2q/d)f(s)<∞; and for q=1 if and only if ∫1∞s−(1+2/d)F(s)ds<∞, where F(s)=sup1≤t≤sf(t)/t. This shows for the first time that the model nonlinearity f(u)=u1+2q/d is truly the ‘boundary case’ when q∈(1,∞), but that this is not true for q=1. The same characterisations hold for the equation posed on the whole space Rd provided that limsups→0f(s)/s<∞.
AB - We consider the scalar semilinear heat equation ut−Δu=f(u), where f:[0,∞)→[0,∞) is continuous and non-decreasing but need not be convex. We completely characterise those functions f for which the equation has a local solution bounded in Lq(Ω) for all non-negative initial data u0∈Lq(Ω), when Ω⊂Rd is a bounded domain with Dirichlet boundary conditions. For q∈(1,∞) this holds if and only if limsups→∞s−(1+2q/d)f(s)<∞; and for q=1 if and only if ∫1∞s−(1+2/d)F(s)ds<∞, where F(s)=sup1≤t≤sf(t)/t. This shows for the first time that the model nonlinearity f(u)=u1+2q/d is truly the ‘boundary case’ when q∈(1,∞), but that this is not true for q=1. The same characterisations hold for the equation posed on the whole space Rd provided that limsups→0f(s)/s<∞.
KW - Dirichlet heat kernel
KW - Dirichlet problem
KW - Instantaneous blow-up
KW - Local existence
KW - Non-existence
KW - Semilinear heat equation
UR - http://www.scopus.com/inward/record.url?scp=84939484433&partnerID=8YFLogxK
U2 - 10.1016/j.anihpc.2015.06.005
DO - 10.1016/j.anihpc.2015.06.005
M3 - Article
AN - SCOPUS:84939484433
SN - 0294-1449
VL - 33
SP - 1519
EP - 1538
JO - Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire
JF - Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire
IS - 6
ER -