TY - JOUR
T1 - A Bean-Like Formation of Germanium Nanoparticles Inside CNTs by the Subsequent Operation of Colloidal Synthesis and Catalytic Chemical Vapor Deposition Methods
AU - Karatutlu, Ali
AU - Boi, Filippo S.
AU - Wilson, Rory M.
AU - Ersoy, Osman
AU - Ortac, Bulend
AU - Sapelkin, Andrei
N1 - Publisher Copyright:
© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2018/11
Y1 - 2018/11
N2 - The first attempts of implanting Ge nanoparticles (Ge NPs) inside iron filled CNTs (IF-CNTs) by a subsequent use of the bench top colloidal synthesis and chemical vapor deposition (CVD) approach is shown. Ge NPs are colloidally synthesized (with a 3.8 ± 0.6 nm in size) before the deposition. The hybrid Ge NPs/IF-CNTs structure and morphology are characterized using high-resolution transmission electron microscopy, scanning electron microscopy, selective area electron diffraction, and X-ray diffraction studies. After the deposition, Ge NPs appear to be grown in size and to be sprinkled almost homogeneously into the IF-CNTs similar to a bean-like deposition. CNTs diameter is also identified to be enlarged drastically when using Ge NPs as a catalyst in CVD compared to the CNTs formation without Ge NPs. In addition, micro-length rectangular Ge µPs are also found outside the nanotube core. Rietveld analysis shows the presence of γ-Fe (Fm-3m), ferromagnetic α-Fe (Im-3m), Fe3C, Ge (Fd-3m), and multiwall CNTs. The results indicate that Ge NPs and IF-CNTs demonstrate cocatalytic activity in increasing the respective sizes, which are dramatically larger than those obtained by the conventional approaches.
AB - The first attempts of implanting Ge nanoparticles (Ge NPs) inside iron filled CNTs (IF-CNTs) by a subsequent use of the bench top colloidal synthesis and chemical vapor deposition (CVD) approach is shown. Ge NPs are colloidally synthesized (with a 3.8 ± 0.6 nm in size) before the deposition. The hybrid Ge NPs/IF-CNTs structure and morphology are characterized using high-resolution transmission electron microscopy, scanning electron microscopy, selective area electron diffraction, and X-ray diffraction studies. After the deposition, Ge NPs appear to be grown in size and to be sprinkled almost homogeneously into the IF-CNTs similar to a bean-like deposition. CNTs diameter is also identified to be enlarged drastically when using Ge NPs as a catalyst in CVD compared to the CNTs formation without Ge NPs. In addition, micro-length rectangular Ge µPs are also found outside the nanotube core. Rietveld analysis shows the presence of γ-Fe (Fm-3m), ferromagnetic α-Fe (Im-3m), Fe3C, Ge (Fd-3m), and multiwall CNTs. The results indicate that Ge NPs and IF-CNTs demonstrate cocatalytic activity in increasing the respective sizes, which are dramatically larger than those obtained by the conventional approaches.
KW - chemical vapor deposition
KW - CNTs
KW - colloidal
KW - ferromagnetism
KW - germanium
KW - nanoparticles
UR - http://www.scopus.com/inward/record.url?scp=85055279455&partnerID=8YFLogxK
U2 - 10.1002/crat.201800123
DO - 10.1002/crat.201800123
M3 - Article
AN - SCOPUS:85055279455
SN - 0232-1300
VL - 53
JO - Crystal Research and Technology
JF - Crystal Research and Technology
IS - 11
M1 - 1800123
ER -