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ABSTRACT
Large language models (LLMs) have been applied in many
fields and have developed rapidly in recent years. As a classic
machine learning task, time series forecasting has recently
been boosted by LLMs. Recent works treat large language
models as zero-shot time series reasoners without further
fine-tuning, which achieves remarkable performance. How-
ever, some unexplored research problems exist when applying
LLMs for time series forecasting under the zero-shot setting.
For instance, the LLMs’ preferences for the input time series
are less understood. In this paper, by comparing LLMs with
traditional time series forecasting models, we observe many
interesting properties of LLMs in the context of time series
forecasting. First, our study shows that LLMs perform well
in predicting time series with clear patterns and trends but
face challenges with datasets lacking periodicity. This obser-
vation can be explained by the ability of LLMs to recognize
the underlying period within datasets, which is supported by
our experiments. In addition, the input strategy is investi-
gated, and it is found that incorporating external knowledge
and adopting natural language paraphrases substantially im-
prove the predictive performance of LLMs for time series.
Our study contributes insight into LLMs’ advantages and
limitations in time series forecasting under different condi-
tions.

1. INTRODUCTION
Recently, large language models (LLMs) have been widely
used and have achieved promising performance across various
domains, such as health management, customer analysis, and
text feature mining [1–4]. Time series forecasting requires
extrapolation from sequential observations. Language models
are designed to discern intricate concepts within temporally
correlated sequences and intuitively appear well-suited for
this task. Hence, some preliminary studies apply LLMs to
time series forecasting tasks [5–7].

However, the application of LLMs for time series forecasting
is still in its early stage, and the boundaries of this research
area are not yet well defined. There are many unexplored
problems in this field. For example, existing research lacks
exploration into how the performance of LLMs varies when
faced with different types of time series inputs. This in-
cludes the effectiveness gap for LLMs in predicting data with
seasonal and trending patterns versus data without such

patterns.

To fill this research gap, in this paper, we focus on LLMs’
preferences for the input time series in time series forecast-
ing under the zero-shot prompting setting. Experiments on
both real and synthesized datasets show that LLMs perform
better in time series with higher trend or seasonal strengths.
Our observations also reveal that LLMs perform worse when
there are multiple periods within datasets, which may be
attributed to the fact that LLMs cannot capture distinct
periods within those datasets. To further discern the LLMs’
preferences for the specific input data segments, we design
counterfactual experiments involving systematic permuta-
tions of input sequences. The findings suggest that LLMs
are particularly sensitive to the segment of input sequences
closest to the target output.

Based on the above findings, we want to explore why LLMs
forecast well on datasets with higher seasonal strengths. To
this end, we require LLMs to tell the period of the datasets
through multiple runs. We find that LLMs can mostly rec-
ognize the underlying period of a dataset. This can explain
the findings of why large language models can forecast time
series with high trends or seasonal intensities well since they
can obtain the seasonal pattern inside the datasets.

In light of the above-mentioned findings, we are interested
in how to leverage these insights to further improve model
performance. To address this, we propose two simple tech-
niques to enhance model performance: incorporating external
human knowledge and converting numerical sequences into
natural language counterparts. Incorporating supplementary
information enables large language models to more effectively
grasp the periodic nature of time series data, moving beyond
a mere emphasis on the tail of the time series. Transforming
numerical data into a natural language format enhances the
model’s ability to comprehend and reason, also serving as a
beneficial approach. Both approaches improve model perfor-
mance and contribute to our understanding of LLMs in time
series forecasting. The workflow is illustrated in Figure 1.

The key contributions are as follows:

• We investigate the preferences for the input sequences in
LLMs in time series forecasting tasks. Our analysis has
revealed that LLMs significantly outperform traditional
time series forecasting methods without the need for ad-
ditional fine-tuning. Interestingly, LLMs display superior
predictive capabilities when dealing with datasets that
have higher trends and seasonal strengths.

• We require LLMs to identify the periodicity of datasets
across multiple iterations. Our observations indicate that
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LLMs can effectively recognize the inherent periodic pat-
terns within datasets. This observation answers the ques-
tion of why LLMs perform well in forecasting time series
with higher seasonal strengths, as they can capture the
seasonal patterns inherent in the data.

• We propose two simple techniques to improve model per-
formance and find that both incorporating external human
knowledge into input prompts and paraphrasing input
sequences to natural language substantially improve the
performance of LLMs in time series forecasting.

2. PRELIMINARIES

2.1 Large Language Model
We use LLMs as a zero-shot learner for time series forecasting
by treating numerical values as text sequences. In this paper,
we investigate three close source LLMs, including GPT-3.5-
turbo, GPT-4-turbo, and Gemini-1.0-Pro, and one open-
source LLMs, i.e., llama-2-13B. The success of LLMs in
time series forecasting can significantly depend on correct
pre-processing and handling of the data [5]. We followed
the pre-processing approach of Gruver [5] and this process
involves the following few steps.

Input Pre-processing. In this phase of time series fore-
casting with LLMs, we perform two pre-processing steps.
First, numerical values are transformed into strings, a crucial
step that significantly influences the model’s comprehension
and data processing. For instance, a series like 0.123, 1.23,
12.3, 123.0 is reformatted to ”1 2, 1 2 3, 1 2 3 0, 1 2 3 0 0”,
introducing spaces between digits and commas to delineate
time steps, while decimal points are omitted to save token
space. Second, tokenization is equally important, shaping the
model’s pattern recognition capabilities. Unlike traditional
methods such as byte-pair encoding (BPE) [8], which can
disrupt numerical coherence, we use spacing digits which en-
sures individual tokenization, enhancing pattern discernment.
Third, rescaling is employed to efficiently utilize tokens and
manage large inputs by adjusting values so that a specific
percentile aligns to 1. This facilitates the model’s exposure
to varying digit counts and supports the generation of larger
values, a testament to the nuanced yet critical nature of data
preparation in leveraging LLMs for time series analysis.

2.2 Time Series Forecasting
In the context of time-series forecasting, the primary goal is
to predict the values for the next H steps based on observed
values from the preceding K steps, which is mathematically
expressed as:

X̂t, ..., X̂t+H−1 = F (Xt−1, ..., Xt−K ;V ;λ) (1)

Here, X̂t, ..., X̂t+H−1 represent the H-step estimation given
the previous K-step values Xt−1, ..., Xt−K . λ denotes the
trained parameters from the model F , and V denotes the
prompt or any other information used for inference. In this
paper, we focus predominantly on univariate time series
forecasting to investigate the preference and performance of
LLMs in univariate time series forecasting under the zero-shot
setting.

Motivated by interpretability requirements in real-world sce-
narios, time series can often be decomposed into the trend

component, the seasonal component, and the residual compo-
nent through the addictive model [9]. The trend component
captures the hidden long-term changes in the data, such as
the linear or exponential pattern. The seasonal component
captures the repeating variation in the data, and the resid-
ual component captures the remaining variation in the data
after removing the trend and seasonal components. This
decomposition offers a method to quantify the properties of
time series, which is detailed in subsection 3.2.

Datasets. In this study, we primarily use Darts [10], a
benchmark univariate dataset widely recognized in deep
learning research, along with many baseline methods. Darts
consists of eight real univariate time series datasets, including
those with clear patterns, such as the AirPassengerDataset,
and irregular datasets, such as the SunspotsDataset. Besides,
we employ some other commonly used datasets, such as US
Births Dataset [11], TSMC-Stock and Turkeypower datasets
[5] and ETT [12] in Sections 5.2 and 5.3 to demonstrate the
effectiveness of our proposed methods. A full description of
those datasets can be seen in Section 5.1.

Evaluation Metrics. In this paper, we evaluate model
performance with three metrics: Mean Squared Error (MSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage
Error (MAPE). These metrics are defined as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

MAE =
1

n

n∑
i=1

|yi − ŷi| (3)

MAPE =
1

n

n∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ (4)

where yi denotes the true value, ŷi represents the predicted
value, and n is the sample size.

3. WHAT ARE LLMS’ PREFERENCES IN
TIME SERIES FORECASTING?

To explore the preference of LLMs, we first quantify the
properties of the input time series to investigate the LLMs’
preferences for time series. Then, to further emphasize our
findings, we evaluate the importance of different segments of
the input sequence by adding Gaussian noise to the original
time series.

3.1 Analyzing Method
We first compare the performance between LLMs and tradi-
tional time series forecasting methods, as shown in Table 2.
It is shown that LLMs perform better within most datasets.
GPT-4-turbo and Llama-2 perform relatively well on the Air-
Passengerdataset and the AusBeerdataset with low MAPE.
Gemini outperforms GPT-3.5-turbo on time series forecast-
ing and outperforms GPT-4-turbo on some datasets but is
on par with GPT-4-turbo overall.

To understand the preferences of the LLMs, we compare our
framework using various foundational models, such as GPT-4-
turbo and GPT-3.5-turbo, with traditional methods. We also
design experiments on synthesized datasets to validate our
findings and analyze the impact of the multiple periods. To
quantify the LLMs’ preferences towards time series, following
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Figure 1: The workflow of our analysis process. Our analysis workflow involves processing sequence data using different
tokenization and embedding methods with various LLMs, such as GPTs and Gemini. To analyze the preferences of LLMs, we
compute the seasonal and trend strength inside the datasets. Our experiments illuminate that LLMs prefer series with higher
seasonal and trend strengths. To elucidate the rationale behind our findings, we demand the LLMs identify the underlying
periods, revealing that the model can recognize the underlying periods in most cases. In addition, to improve the performance
of time series forecasting, we propose two approaches to the user input: for the input prompt, we incorporate human knowledge
regarding the dataset sources, and for the input sequence, we reprogram the data into natural language sequences. Both
methods result in substantially improved model performance.

[13], we define the strength of the trend and the seasonality
as follows:

QT =1− Var(XR)

Var(XT+XR)
, QS=1− Var(XR)

Var(XS+XR)
(5)

where XK ∈ RK , XS ∈ RK and XR ∈ RK denote the trend
component, the seasonal component and the residual compo-
nent respectively. The presented indices indicate the trend’s
strength and seasonality, providing a measure ranging up to
1. It is easy to find that a higher value indicates a stronger
trend or seasonality within the time series. Throughout
this paper, we use the word ”higher strength” to represent
the comparison of the strengths between different datasets.
The assessment of strength is not based on a fixed level, as
the concepts of ”strong” and ”weak” vary across different
datasets and scenarios.

To further discern the LLMs’ preferences for the specific
segments of the input data, we add Gaussian noise to the
original time series to create counterfactual examples. We
start by defining a sliding window that constitutes 10% of
the total length of the time series, and we set the sliding
window to gradually move closer to the output sequence. This
method allows us to assess the impact of different segments
fairly and thereby infer the interpretability of the time series
segments that LLMs predominantly focus on.

3.2 Preferences for Input Sequences
In this subsection, we investigate the input sequence pref-
erences for time series forecasting with LLMs. We conduct
experiments on real datasets with GPT-3.5-turbo and GPT-

4-turbo, measuring model performance through MAPE. To
further validate our findings, we also use GPT-3.5-turbo and
Gemini-1.0-Pro to forecast multiple-period time series on
synthesized datasets.

3.2.1 Implementation Details

Real Datasets: We conduct experiments on ten real-world
datasets, including both those with clear patterns and those
with irregular characteristics. The results are shown in
Table 8. We apply the Seasonal-Trend decomposition using
the LOESS (STL) technique [9] to decompose the original
time series into trend, seasonal, and residual components.
Subsequently, we compute the strengths of the trend strength
QT and seasonal strength QS . To further understand the
LLMs’ preferences for the specific segments of the input data,
we conduct the counterfactual analysis with a systematic
permutation to the input time series. We first scale the
sequence through max-min normalization. We then define a
sliding window that constitutes 10% of the total length of
the time series and add Gaussian noise into the data within
this window data. Subsequently, the sliding window moves
closer to the last known data point.

Synthesized Datasets: To further validate our findings
and investigate the influence of the number of periods on
model performance, we generate a dataset using the function
y = α ∗ x + β1 ∗ cos(2πf1 ∗ x) + β2 ∗ cos(2πf2 ∗ x) + �. x
ranges from 0 to 20 and � follows the normal distribution
N (0, 1).

3.2.2 Key Findings
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Table 1: Correlation matrix between the strengths of the input time series and the model performance.
Metrics GPT4-MAPE GPT3.5-MAPE Trend Strength QT Seasonal Strength QS

GPT4-MAPE 1.00 0.99 −0.02 −0.68
GPT3.5-MAPE 0.99 1.00 −0.12 −0.67
Trend Strength QT −0.02 −0.12 1.00 0.51
Seasonal Strength QS −0.68 −0.67 0.51 1.00

After computing the Pearson correlation coefficients (PCC),
we observe a nearly strong correlation between the strengths
and model performance, showing that LLMs perform better
when the input time series has a higher trend and seasonal
strength, which is shown in Table 1. In the context of multi-
period time series, the model performance worsens as the
number of periods increases. It indicates that LLMs may
have difficulty recognizing the multiple periods inherent in
such datasets. Besides, for counterfactual analysis, as shown
in Figure 2 and Figure 3, there is a noticeable increase in
MAPE values when Gaussian noise is added to the latter
segments, while the perturbation of the first part of the
sequence has little effect on the prediction performance. Our
findings reveal that LLMs are more sensitive to the end of
input time series when forecasting. We show our full results
in Figure 2 and Figure 3. As we move to the right along
the x-axis, the closer it gets to the output sequence. It is
also found that the initial part of the sequence has the least
impact on the prediction accuracy. For the datasets with
high seasonal strengths over 85%, such as WoolyDataset, and
MonthlymilkDataset, more than 80% of the length of the
time series has almost no effect on the model performance.

4. WHY DO LLMS FORECAST WELL ON
DATA WITH HIGHER
SEASONAL STRENGTHS?

Our findings show that LLMs demonstrate enhanced per-
formance in time series forecasting with strong seasonal
strengths. This raises the question: Why do LLMs perform
well in forecasting datasets with marked seasonal patterns?
To explore this phenomenon, we craft prompts that require
LLMs to recognize the dataset’s temporal pattern.

This approach is grounded in the hypothesis that LLMs
are proficient in handling datasets with distinct seasonal
attributes. By explicitly prompting LLMs to predict the
dataset’s period, we aim to leverage their inherent ability
to discern and extrapolate from complex patterns, which
sheds light on the mechanisms that underpin their superior
performance in such contexts.

4.1 Implementation Details
To explore the phenomenon that LLMs forecast well on
datasets with higher seasonal strengths, we design experi-
ments to verify this phenomenon. We tokenize the input
sequence and let the LLMs output the period directly. We use
GPT-3.5-turbo, GPT-4-turbo, and Gemini-1.0-Pro to predict
the periods. We have chosen five datasets with their seasonal
strengths exceeding 85%. These datasets are readily avail-
able with clear seasonal patterns. In contrast, determining
the specific periods of other irregular datasets is challenging,
as they have no specific cycles. We record the predicted
periods ten times and identify the mode period, which is
the most frequently predicted value. We then compare the
mode of these ten results with the real period. The mode is
selected as the evaluation metric because, when considering

the usage characteristics of LLMs, the output of this number
best represents the model’s normal performance. The results
are shown in Table 3.

4.2 Key Findings
According to the results, we find that large language models
can mostly determine the periodicity of a dataset. The true
periods are determined here by the periodogram, which is
commonly used to identify the dominant periods [14]. The
multiples of the predicted period also align with the original
data cycle. Consequently, we consider the prediction of these
multiples to be accurate. We observe that LLMs generally
perform well in predicting the period for most datasets with
minimal fluctuations. Surprisingly, we discover that in the
case of WoolyDataset and AusbeerDataset, which possess
relatively short underlying periods, the predicted period is
consistently 3 instead of the true period, 4. This discrepancy
may be attributed to the LLMs’ tendency to focus on cyclic
patterns among individual digits rather than considering the
entire sequence as a whole, a phenomenon that could also
be interpreted as the model’s identification of the underlying
cycle. We leave a comprehensive analysis of this phenomenon
in the future.

5. HOW TO LEVERAGE THESE INSIGHTS
TO IMPROVE THE MODEL’S PERFOR-
MANCE?

Based on the findings in the previous two sections, our fo-
cus is now on how to leverage these findings to further
improve model performance. In this paper, we propose two
approaches to the user input without additional fine-tuning:
for the input prompt, we incorporate additional knowledge of
the specific trend and seasonal patterns in the dataset, which
gives the model a richer understanding of the underlying
patterns. Regarding the input sequence, we transform the
time series data into formats resembling natural language
sequences rather than relying on the original tokenization.
This approach leverages LLMs’ superior capabilities with
language sequences. Both methods achieve substantially
improved model performance.

5.1 Dataset description and the External Knowl-
edge incorporated in the Prompts

We briefly introduce the datasets we use, which also serve
as the external knowledge incorporated into the prompts.
Following [5], we downsample the input series to an hourly
frequency, yielding a total of 267 observations and resulting
in relatively small datasets. Additionally, we incorporate
Memorization datasets published after September 2021, the
cutoff date for GPT-3.5-turbo, to demonstrate the effective-
ness of TimeLLM and our proposed methods. Finally, we
implemented univariate time series forecasting to predict the
’OT’ feature on the ETTh1 and ETTm2 datasets, focusing
on the last 96 steps of the test set.
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Table 2: Comparison test of traditional prediction methods.
AirPassengers AusBeer

Method MSE / MAE / MAPE Method MSE / MAE / MAPE
Exponential Smoothing 2007.67 / 37.91 / 8.10 Exponential Smoothing 703.26 / 22.80 / 5.44
SARIMA 2320.47 / 39.80 / 8.46 SARIMA 475.53 / 19.07 / 4.49
Cyclical Regression 2028.37 / 36.70 / 8.52 Cyclical Regression 989.31 / 26.29 / 6.13
AutoARIMA 8702.09 / 68.52 / 13.98 AutoARIMA 550.05 / 18.84 / 4.41
FFT 3274.46 / 46.38 / 10.59 FFT 7682.56 / 73.74 / 17.44
StatsForecastAutoARIMA 2952.52 / 45.41 / 9.71 StatsForecastAutoARIMA 559.46 / 20.56 / 4.86
Naive Mean 47703.65 / 204.25 / 44.61 Naive Mean 1885.72 / 30.66 / 6.68
Naive Seasonal 6032.80 / 62.87 / 14.18 Naive Seasonal 10828.02 / 96.35 / 23.39
Naive Drift 6505.79 / 72.21 / 17.50 Naive Drift 18507.61 / 128.23 / 30.91
Naive Moving Average 6032.80 / 62.87 / 14.18 Naive Moving Average 10828.02 / 96.35 / 23.39
N-Beats 3994.55 / 54.95 / 12.81 N-Beats 250.61 / 14.42 / 3.53
DeepAR 184222.64 / 421.99 / 98.42 DeepAR 16197.17 / 40.23 / 9.89
Prophet 7345.31 / 43.87 / 8.62 Prophet 6323.89 / 28.76 / 6.92
LLMTime with GPT-3.5-Turbo 6244.07 / 61.39 / 14.43 LLMTime with GPT-3.5-Turbo 841.68 / 23.59 / 5.62
LLMTime with GPT-4-Turbo 1317.9 / 55.49 / 11.18 LLMTime with GPT-4-Turbo 513.49 / 18.57 / 4.28
LLMTime with Gemini-1.0-pro 6392.21 / 63.57 / 14.03 LLMTime with Gemini-1.0-pro 397.78 / 14.36 / 3.27
LLMtime with Llama-2 1286.25 / 28.04 / 6.07 LLMtime with Llama-2 644.82 / 17.88 / 4.08

MonthlyMilk Sunspots
Method MSE / MAE / MAPE Method MSE / MAE / MAPE
Exponential Smoothing 564.94 / 20.23 / 2.41 Exponential Smoothing 326750.49 / 499.78 / 3129.63
SARIMA 1289.76 / 32.78 / 3.87 SARIMA 2902.72 / 45.75 / 466.99
Cyclical Regression 3631.53 / 56.15 / 6.60 Cyclical Regression 3917.76 / 47.84 / 274.31
AutoARIMA 2682.67 / 42.82 / 5.20 AutoARIMA 4695.67 / 58.47 / 709.23
FFT 3453.96 / 45.62 / 5.48 FFT 3784.56 / 49.81 / 150.32
StatsForecastAutoARIMA 186.14 / 10.64 / 1.28 StatsForecastAutoARIMA 8406.55 / 72.99 / 95.18
Naive Mean 19893.07 / 127.33 / 14.46 Naive Mean 4120.40 / 49.84 / 267.22
Naive Seasonal 4870.40 / 56.00 / 6.31 Naive Seasonal 4440.63 / 56.78 / 688.58
Naive Drift 3998.11 / 56.06 / 6.52 Naive Drift 5032.77 / 60.40 / 724.88
Naive Moving Average 4870.40 / 56.00 / 6.31 Naive Moving Average 4440.63 / 56.78 / 688.58
N-Beats 3140.89 / 51.57 / 6.07 N-Beats 4877.59 / 56.58 / 105.55
DeepAR 728289.50 / 851.30 / 99.22 DeepAR 3421.02 / 48.93 / 132.76
Prophet 663.41 / 25.76 / 2.92 Prophet 6303.57 / 76.83 / 67.97
LLMTime with GPT-3.5-Turbo 7507.13 / 66.28 / 112.77 LLMTime with GPT-3.5-Turbo 6556.55 / 58.95 / 217.94
LLMTime with GPT-4-Turbo 4442.18 / 50.75 / 172.82 LLMTime with GPT-4-Turbo 3374.70 / 41.87 / 321.11
LLMTime with Gemini-1.0-pro 628.98 / 17.01 / 1.99 LLMTime with Gemini-1.0-pro 626.03 / 14.94 / 1.73
LLMtime with Llama-2 3410.20 / 41.40 / 240.25 LLMtime with Llama-2 4467.67 / 48.95 / 91.79

WineDataset WoolyDataset
Method MSE / MAE / MAPE Method MSE / MAE / MAPE
Exponential Smoothing 23709576.52 / 3370.78 / 14.23 Exponential Smoothing 24925885.81 / 3548.19 / 14.98
SARIMA 1150166.94 / 966.57 / 20.76 SARIMA 812352.21 / 759.07 / 16.37
Cyclical Regression 7873785.27 / 2148.24 / 8.52 Cyclical Regression 1032574.82 / 962.72 / 22.14
AutoARIMA 698661.90 / 646.03 / 14.07 AutoARIMA 838852.91 / 786.25 / 16.84
FFT 1031170.45 / 867.83 / 18.60 FFT 1012255.35 / 945.20 / 20.80
StatsForecastAutoARIMA 20040877.37 / 2853.17 / 12.05 StatsForecastAutoARIMA 917617.19 / 858.57 / 18.91
Naive Mean 11557786.19 / 2200.04 / 8.80 Naive Mean 816762.31 / 764.73 / 16.12
Naive Seasonal 879447.22 / 724.23 / 15.52 Naive Seasonal 1051110.81 / 982.25 / 22.19
Naive Drift 9609576.04 / 1833.38 / 7.36 Naive Drift 812352.21 / 759.07 / 16.37
Naive Moving Average 9070696.99 / 1719.17 / 6.90 Naive Moving Average 1032574.82 / 962.72 / 22.14
N-Beats 5418377.00 / 1887.30 / 7.68 N-Beats 653104.31 / 743.54 / 15.96
DeepAR 715027008.00 / 26236.14 / 89.91 DeepAR 243831.14 / 4897.85 / 94.89
Prophet 4846922.27 / 2201.57 / 8.27 Prophet 365241.98 / 891.70 / 34.65
LLMTime with GPT-3.5-Turbo 30488.60 / 388.28 / 15.83 LLMTime with GPT-3.5-Turbo 526903.08 / 574.58 / 12.00
LLMTime with GPT-4-Turbo 22488.17 / 253.08 / 9.98 LLMTime with GPT-4-Turbo 942987.19 / 871.64 / 18.55
LLMTime with Gemini-1.0-pro 258584.78 / 3645.23 / 14.60 LLMTime with Gemini-1.0-pro 64.92 / 6.39 / 7.04
LLMtime with Llama-2 951194.94 / 240.08 / 9.45 LLMtime with Llama-2 675062.52 / 736.04 / 15.83

HeartRateDataset Weather
Method MSE / MAE / MAPE Method MSE / MAE / MAPE
Exponential Smoothing 11.16 / 1.38 / 1.49 Exponential Smoothing 1684.38 / 31.60 / 6.79
SARIMA 12.98 / 1.34 / 1.61 SARIMA 1943.81 / 33.33 / 7.09
Cyclical Regression 13.58 / 1.31 / 1.20 Cyclical Regression 1700.73 / 30.77 / 7.15
AutoARIMA 13.26 / 1.25 / 1.39 AutoARIMA 7315.10 / 57.44 / 11.70
FFT 13.95 / 1.16 / 1.34 FFT 2752.02 / 38.90 / 8.87
StatsForecastAutoARIMA 10.53 / 1.27 / 1.39 StatsForecastAutoARIMA 2479.55 / 38.06 / 8.16
Naive Mean 12.02 / 1.27 / 1.26 Naive Mean 39879.84 / 168.27 / 36.44
Naive Seasonal 10.55 / 1.32 / 1.31 Naive Seasonal 5057.47 / 52.81 / 11.89
Naive Drift 10.60 / 1.15 / 1.30 Naive Drift 5466.23 / 60.58 / 14.70
Naive Moving Average 12.13 / 1.27 / 1.34 Naive Moving Average 5057.47 / 52.81 / 11.89
N-Beats 72.11 / 7.10 / 7.40 N-Beats 4532.84 / 39.21 / 23.49
DeepAR 286.82 / 15.67 / 16.36 DeepAR 6325.75 / 35.97 / 16.59
Prophet 88.93 / 10.97 / 6.54 Prophet 3768.15 / 29.36 / 24.01
LLMTime with GPT-3.5-Turbo 76.83 / 7.15 / 7.42 LLMTime with GPT-3.5-Turbo 224.54 / 3.07 / 0.83
LLMTime with GPT-4-Turbo 988.14 / 26.57 / 29.22 LLMTime with GPT-4-Turbo 111.65 / 2.40 / 0.64
LLMTime with Gemini-1.0-pro 57.96 / 6.01 / 6.66 LLMTime with Gemini-1.0-pro 176.32 / 3.72 / 0.75
LLMtime with Llama-2 75.58 / 7.11 / 7.94 LLMtime with Llama-2 215.39 / 4.07 / 1.31
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Figure 2: Experiments of Sequence Focused Attention Through Counterfactual Explanation on GPT-3.5-turbo.
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Figure 3: Experiments of Sequence Focused Attention Through Counterfactual Explanation on Gemini-Pro-1.0.

5.2 External Knowledge Enhancing Time Se-
ries Forecasting

We introduce a novel method to improve the performance of
large language models for time series forecasting. The core
idea of this part is to use the knowledge obtained from the pre-
training stage to help predict. We provide the large language
model with some basic information about the current dataset,
such as the background of the data collection, and this process
does not involve data leakage. We incorporate our tests on
the data leakage in Section 5.5. We do not provide the LLMs
with any statistical information, such as the periods or trends.
This approach ensures that the LLMs forecast the time
series entirely based on the data and their prior knowledge.
Let Vs denote the initial prompt representing the original
time sequence, and let z denote the additional information.
Consequently, the new prompt Ve can be expressed as: Ve =
z + Vs.

5.2.1 Implementation Details

We input the dataset’s external knowledge through prompts
before the sequence’s input. The external knowledge of each
dataset is presented in subsection 5.1. The results are shown
in Table 8, where LLMTime Prediction refers to the approach
described by [5] without any modifications.

5.2.2 Key Findings

As shown in Table 5, this method achieves improved perfor-
mance in most scenarios. Besides, GPT-4-turbo generally
performs better than GPT-3.5-turbo on MSE, MAE, and
MAPE, especially on AirPassengers, AusBeer, and other
datasets. Llama-2 significantly outperforms GPT-3.5-turbo
and GPT-4-turbo in terms of MSE and MAE metrics on
some datasets (e.g., Wooly, ETTh1, ETTm2), indicating

that it can capture data features more accurately. Using
External Knowledge Enhancing, Gemini outperforms other
models on MonthlyMilk, Sunspots, Wooly, and HeartRate
Datasets, but performs poorly on other datasets.

5.3 Natural Language Paraphrasing Time Se-
ries Forecasting

In this subsection, we conduct experiments on the natural
language paraphrasing of the input time sequences. This
strategy capitalizes on the advanced abilities of large lan-
guage models in handling language sequences. It is motivated
by the fact that LLMs are insensitive by the order of magni-
tude and size of digits [15].

We use natural language to describe the trend between con-
secutive values. For instance, given a time series X where
X = [X1, X2, X3, . . . , Xn], we describe the trend from Xt to
Xt+1 as follows: ”The value rises from Xt to Xt+1, and falls
from Xt+1 to Xt+2...”. The string we get here is our natural
language paraphrasing sequence. After generating responses
based on the string, we extract the values from the text and
construct the predicted time series.

5.3.1 Implementation Details

We use GPT-3.5-Turbo, GPT-4-turbo, Llama-2 and Gemini-
Pro-1.0 to forecast the time series, where part of the results
are presented in Table 4 due to the page limit.

5.3.2 Key Findings

According to the results in Table 4, we find that enhancing
LLM through natural language paraphrasing improves time
series forecasting on most datasets. For instance, GPT-3.5-
turbo and GPT-4-turbo perform better on most datasets, es-
pecially on Natural Language Paraphrasing methods. Gemini
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Table 3: Results and comparison of time series period prediction based on GPT-3.5-turbo and Gemini.
Model Dataset Period Real Mode

AirPassengersDataset 24 24 7 24 12 24 11 24 24 24 12 24
WineDataset 11 12 24 24 24 20 24 24 24 24 12 24

GPT-3.5-turbo MonthlyMilkDataset 6 9 12 9 12 12 12 12 12 11 12 12
WoolyDataset 4 3 4 3 3 4 3 3 6 3 4 3

AusBeerDataset 3 3 3 3 3 3 3 3 3 3 4 3
AirPassengersDataset 11 12 12 4 12 12 12 12 12 12 12 12

WineDataset 10 12 24 12 6 12 12 24 12 12 12 12
Gemini-Pro-1.0 MonthlyMilkDataset 16 12 12 12 12 39 12 11 12 12 12 12

WoolyDataset 5 7 4 5 4 4 4 4 5 6 4 4
AusBeerDataset 4 4 4 2 5 5 4 3 5 7 4 4

AirPassengersDataset 12 12 12 12 12 12 12 12 12 12 12 12
WineDataset 7 6 6 6 7 7 6 6 6 6 12 6

GPT-4-turbo MonthlyMilkDataset 10 12 12 12 12 14 12 12 12 12 12 12
WoolyDataset 5 5 7 5 5 5 7 5 5 4 4 5

AusBeerDataset 4 4 4 4 6 4 4 4 6 4 4 4

outperforms other LLMs on Wooly and AusBeer datasets but
underperforms on others with natural language paraphrasing.
All these results demonstrate the superior performance of
our methods.

5.4 Computational Cost
For reference, we list the average token length cost associated
with external knowledge enhancement and natural language
paraphrasing. Avg Token Length(ori) is the prompt Length
of the unexecuted method, and Avg Token Length(EKE,
NLP) is the prompt length after executing the corresponding
policy. It is noted that Natural Language Paraphrasing is
judged one by one through hard coding. Besides, there is a
length check after transformation, so it is guaranteed that
a certain length can be obtained each time. The results are
shown in Table 7. Several key observations can be made: the
original TimeLLM method maintains a uniform token length
of 200 across all datasets, providing a stable baseline. EKE
results in a slight increase in token length, ranging from 7%
to 12%, suggesting a good balance between incorporating
additional context and maintaining computational efficiency.
In contrast, NLP leads to a more substantial increase in
token numbers.

5.5 Tests on Data Leakage
We indirectly explore the data leakage problem by asking
LLMs if they can identify the dataset name, the first 20 steps
of the predicted dataset, and identify the dataset based on the
first 20 steps of the time series data points. The results show
that although GPT and Gemini can identify and determine
data sets with limited information, they generally do not
have detailed sequence data knowledge for a wider range of
data sets Table 6.

6. RELATED WORK
In this section, we review two lines of research that are most
relevant to ours.

6.1 Traditional Time Series Forecasting
Two commonly used traditional time series analysis methods
are the ARIMA method [16] and the exponential smoothing
method [17]. The ARIMA model is a classic forecasting
method that breaks down a time series into auto-regressive
(AR), difference (I), and moving average (MA) components to
make predictions. On the other hand, exponential smoothing

is a straightforward yet effective technique that forecasts fu-
ture values by taking a weighted average of past observations.
The ARIMA model requires testing data stationarity and
selecting the right order. However, the exponential smooth-
ing method is not affected by outliers; it is only suitable for
stationary time series, and its accuracy in predicting future
values is lower than that of the ARIMA model.

6.2 LLMs for Time Series Forecasting
The first family of methods involves either pre-training a
foundational large language model or fine-tuning existing
LLMs by leveraging extensive time-series data [6, 18–20].
For instance, [6] aimed to build the foundational models for
time series and investigate its scaling behavior. [21] proposed
a two-stage fine-tuning strategy for handling multivariate
time-series forecasting. Although these studies contribute
significantly to understanding foundational models, they
require considerable computing resources and expertise in
fine-tuning procedures. Moreover, the details of the model
may not be disclosed for commercial purposes [18,22], which
impedes future research. Additionally, in scenarios with
limited data available, there is insufficient information for
training or fine-tuning.

In contrast, the second family of methods does not involve
model parameter finetuning. These methods either create
appropriate prompts or reprogramme inputs to effectively
handle time series data [5, 7, 23, 24]. [7] tokenizes the time
series and manages to embed those tokens, and [23] repro-
grammed the time series data with text prototypes before
feeding them to the LLMs. These studies illuminate the
characteristics of time series data and devise methods to
align them with LLMs. However, they lack an analysis of the
ability and bias in forecasting time series. The most related
work to us is [5], though it lacks a quantitative analysis
of the preference for the time series in LLMs, and it fails
to explore the impact of input forms and prompt contents,
such as converting the numerical time series into the natu-
ral language sequences and incorporating the background
information into the prompt. Our work fills the gap, and we
expect our work to be the benchmark for time-series analysis
and provide insights for subsequent research.

7. CONCLUSIONS AND FUTURE WORK
In this work, we investigate the key preferences of LLMs in
the domain of time series forecasting under the zero-shot
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Table 4: The results of natural language paraphrasing of sequences and baseline comparison(Partial).

Models Datasets
Natural Language Paraphrasing LLMTime Prediction
MSE MAE MAPE MSE MAE MAPE

GPT-3.5-Turbo

AirPassengers 267.66 3.66 0.99 6244.07 61.39 14.43
AusBeer 598.45 5.81 1.36 841.68 23.59 5.62

GasRateCO2 3.16 0.46 0.85 10.88 2.66 4.73
MonthlyMilk 968.69 8.61 1.02 7507.13 66.28 112.77
Sunspots 251.61 4.27 20.42 6556.55 58.95 217.94

(GPT-3.5-turbo-1106) HeartRate 4.38 0.55 0.57 76.83 7.15 7.42
Istanbul-Traffic 224.17 3.74 8.81 335.05 6.75 11.68

ETTh1 1.21 0.48 54.17 5.64 2.71 1.625
ETTm2 0.81 0.36 27.33 3.46 2.17 1.178

GPT-4-Turbo

AirPassengers 133.10 2.87 0.80 1286.25 28.04 6.07
AusBeer 661.80 7.24 1.63 513.49 18.57 4.28

GasRateCO2 2.28 0.41 0.75 7.27 2.32 4.18
MonthlyMilk 413.63 4.94 0.57 4442.18 50.75 172.82
Sunspots 194.52 5.30 16.10 3374.70 41.87 321.11

(GPT-4-turbo-preview) HeartRate 11.64 1.21 1.30 988.14 26.57 29.22
Istanbul-Traffic 176.91 3.88 9.67 195.33 5.53 10.03

ETTh1 1.20 0.49 47.62 4.73 1.53 3.282
ETTm2 0.45 0.27 23.62 2.30 1.034 1.607

Llama-2

AirPassengers 751.34 6.77 1.53 1317.9 55.49 11.18
AusBeer 591.75 23.25 5.41 644.82 17.88 4.08

GasRateCO2 10.16 2.89 5.16 12.78 2.97 5.47
MonthlyMilk 851.17 84.83 9.46 3410.20 41.40 240.25
Sunspots 1483.29 33.27 17.79 4467.67 48.95 91.79

(llama-2-13B) HeartRate 49.8 5.84 6.53 75.58 7.11 7.94
Istanbul-Traffic 306.80 5.39 7.24 438.28 7.28 9.81

ETTh1 1.47 0.87 58.34 4.84 1.79 3.178
ETTm2 0.84 0.41 29.86 3.31 2.07 2.153

Gemini-Pro-1.0

AirPassengers 4474.54 31.54 7.02 6392.21 63.57 14.03
AusBeer 278.45 10.05 2.29 397.78 14.36 3.27

GasRateCO2 13.29 2.50 4.38 18.99 3.57 6.46
MonthlyMilk 440.29 11.91 1.39 628.98 17.01 1.99
Sunspots 438.29 10.47 1.21 626.03 14.94 1.73

(gemini-1.0-pro) HeartRate 40.57 4.20 4.67 57.96 6.01 6.66
Istanbul-Traffic 267.43 5.69 8.37 321.56 7.32 9.71

ETTh1 1.17 0.74 54.86 4.84 1.79 3.178
ETTm2 0.88 0.39 21.82 3.31 2.07 2.153

setting, revealing a proclivity for data with distinct trends
and seasonal patterns. Through a blend of real and syn-
thetic datasets, coupled with counterfactual experiments,
we have demonstrated LLMs’ improved forecasting perfor-
mance with time series that exhibit clear periodicity. Besides,
our results indicate that LLMs struggle with multi-period
time series datasets, as they face difficulty in recognizing
the distinct periods within them. Our findings also suggest
that large language models are more sensitive to the seg-
ment of input sequences closer to the last known data than
other locations. Lastly, experimental results indicate that
our proposed strategies of incorporating external knowledge
and transforming numerical sequences into natural language
formats have yielded substantial improvements in accuracy.
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Table 5: The results of external knowledge enhancement and baseline comparison.

Models Dataset
External Knowledge Enhancing LLMTime Prediction
MSE MAE MAPE MSE MAE MAPE
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