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Large-Scale Multi-Building Multi-
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Engineering Building 3F
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Location-Aware Service
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Multi-Floor Indoor Localization with RSSI/Geomagnetic Field*
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4th Floor of IBSS Building 5th Floor of IBSS Building

* Z. Zhong et al., "XJTLUIndoorLoc: A new fingerprinting database for indoor localization and trajectory 
estimation based on Wi-Fi RSS and geomagnetic field," Proc. 2018 CANDAR, Takayama, Japan, Nov. 27–30, 2018.

https://doi.org/10.1109/CANDARW.2018.00050
https://doi.org/10.1109/CANDARW.2018.00050
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Indoor Localization based on Wi-Fi Fingerprinting
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Location Fingerprint

EB306
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• A tuple of (L, F)
• L: Location information

• Geographic coordinates or a label (e.g., “EB306”)

• F : Vector/function of received signal strength 
Indicators (RSSIs)
• e.g., 𝜌1, ⋯ , 𝜌𝑁

𝑇 where 𝜌𝑖 is the RSSI from ith
access point (APi).



Challenges

Scalability

Long-Term Service
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Major Challenges in Large-Scale 
Implementation
• Scalability

• Localization models

• Fingerprint DB construction

• Localization accuracy

• Non-stationarity of location fingerprints
• Incremental/online learning algorithms with pruning/forgetting mechanisms*

• Passive vs. active location estimation

• Integration with other services

• Security/privacy issues

* R. Elwell and R. Polikar, “Incremental learning in nonstationary environments with controlled forgetting,” Proc. IJCNN’09.
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Scalability

• Output scalability
• The number of RPs, which is related to the number of 

output nodes and the number of trainable parameters 
of NN models.

• Data scalability
• A large amount of manpower is required for the 

construction of a large-scale fingerprint database.
• Even much larger under the current pandemic 

situations.

• Input scalability
• The dimension of input data (e.g., RSS vector), which is 

related to the number of input nodes and, again, the 
number of trainable parameters of NN models.
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Investigation of Time Variability of RSSI Fingerprints: 
Exploiting Unlabeled Data During Online Phase
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Multi-Dimensional Fingerprint 
Data Augmentation Based on 
MOGP
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Reasons for Fingerprint Data Augmentation*

• Uneven spatial distributions of RPs.
• These could lead to a large difference in 

positioning accuracy among different buildings 
and floors.

• Areas that cannot be accessible for 
measurements.
• e.g., personal offices, Labs requiring 

authorization for access.

• High cost of data collection.

16* Z. Tang, S. Li, K. S. Kim, and J. Smith, “Multi-output Gaussian process-based data augmentation for multi-building
   and multi-floor indoor localization,” Proc. 2022 ICC Workshops, pp. 361-366, May 2022.

https://doi.org/10.1109/ICCWorkshops53468.2022.9814616
https://doi.org/10.1109/ICCWorkshops53468.2022.9814616


Neural Network (NN) vs. Gaussian Process (GP)

• NNs use adaptive basis functions or 
hidden units to learn hidden features 
of a problem.

• NNs, however, are not so easy to 
apply in practice due to many 
decisions like
• Network architectures,
• Activation functions,
• Learning rate, and so on.

• There is the lack of a principled 
framework to answer these 
questions, too.

• GPs are mathematically equivalent to 
or closely related to well known 
models like
• Bayesian linear models,
• Spline models,
• Large NNs (under suitable conditions),
• Support vector machines (SVMs).

• GP models are easier to handle and 
interpret than NN models.
• The hidden features of a problem could 

be captured by the covariance function 
(kernel) of GP.
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Fingerprint Data Augmentation Based on GP
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Multi-Output Gaussian Process (MOGP)

• For non sampled regions, GP regression can obtain linear unbiased prediction 
based on existing data, which is also called Kriging in geostatistics.

• MOGP can defined as follows:

𝒇 𝒙 ∼ 𝑀𝑂𝐺𝑃(𝒎 𝒙 ,𝑲(𝒙, 𝒙′)),

• Function output: 𝒇 𝒙 = 𝑓1 𝒙 ,⋯ , 𝑓𝑁 𝒙 𝑇 .

• Mean function: 𝒎 𝒙 = 𝑚1 𝒙 ,⋯ ,𝑚𝑁 𝒙 𝑇.
• Typically set to zero.

• Covariance matrix (extended kernel): 𝑲 𝒙, 𝒙′ =

𝐾1,1 𝒙, 𝒙′ ⋯ 𝐾1,𝑁 𝒙, 𝒙′

⋮ ⋱ ⋮
𝐾𝑁,1 𝒙, 𝒙′ ⋯ 𝐾𝑁,𝑁 𝒙, 𝒙′

.
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MOGP-Based Fingerprint Augmentation - 1

• Dataset of N-dimensional RSSI observation at M reference points:

𝐷 = 𝑿, 𝒀 ,

• Design matrix: 𝑿 = 𝒙1, ⋯ , 𝒙𝑀 ∈ 𝑅4×𝑀 with 𝒙𝑖 = 𝐵𝑖 , 𝐹𝑖 , 𝑋𝑖 , 𝑌𝑖
𝑇 where

• 𝐵𝑖 and 𝐹𝑖 are building and floor IDs.

• 𝑋𝑖 and 𝑌𝑖 are the location coordinates of the ith reference point.

• Collection of output vectors:𝒀 = 𝒚1, ⋯ , 𝒚𝑀 ∈ 𝑅𝑁×𝑀 with 𝒚𝑖 = 𝑅𝑆𝑆𝐼𝑖,1, ⋯𝑅𝑆𝑆𝐼𝑖,𝑁
𝑇

where
• 𝑅𝑆𝑆𝐼𝑖,𝑗: RSSI of the jth AP measured at the ith reference point.
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MOGP-Based Fingerprint Augmentation - 2
• N-dimensional RSSI observation can be modelled as follows:

𝒚 = 𝒇 𝒙 + 𝝐 ,
• i.i.d. Gaussian measurement noise: 𝝐~𝒩(𝟎, 𝜮).
• Covariance matrix: 𝜮 = 𝑑𝑖𝑎𝑔 𝜎1

2, ⋯ , 𝜎𝑁
2 .

• Likelihood function:

ℒ 𝒙|𝒚 = 𝑝 𝒚|𝒇, 𝒙, 𝜮 = 𝒩 𝒇 𝒙 , 𝜮 .

• Posterior distribution of the function value at a test point 𝒙∗:
𝒇 𝒙∗ |𝑿, 𝒀, 𝒙∗~𝒩 𝒇 𝒙∗ , 𝜮∗

• Prediction mean: 𝒇(𝒙∗).
• Prediction covariance: 𝜮∗.

• 𝒙∗, 𝒇 𝒙∗ is added to the dataset as an augmented fingerprint.
21



GP Prediction Example*

22
* Wikipedia, “Gaussian process prediction, or Kriging, Wikipedia,” https://en.wikipedia.org/wiki/Gaussian_process#Gaussian_process_prediction,_or_Kriging.

https://en.wikipedia.org/wiki/Gaussian_process#Gaussian_process_prediction,_or_Kriging


MOGP Models*

• Our work is based on the LMC 
model and implemented using 
GPy** Python package.

23* H. Liu, J. Cai, and Y.-S. Ong, “Remarks on multi-output gaussian process regression,” Knowledge-Based Systems, vol. 144, pp. 102–121, 2018.
** GPy - A Gaussian Process (GP) framework in Python: https://gpy.readthedocs.io/en/deploy/.

https://www.sciencedirect.com/science/article/pii/S0950705117306123
https://gpy.readthedocs.io/en/deploy/


Kernels - 1

• Radial basis function(RBF; also known as Gaussian kernel): 

𝑘𝑅𝐵𝐹 𝑥, 𝑥′ = 𝜎2𝑒
−

𝑥−𝑥′
2

2𝑙2 .

• Rational quadratic (RQ) kernel:

𝑘𝑅𝑄 𝑥, 𝑥′ = 𝜎2𝑒
1+

𝑥−𝑥′
2

2𝛼𝑙2

−𝛼

for 𝛼 > 0. 
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Kernels - 2

• Matérn family of kernels: 

𝑘𝑀𝑎𝑡é𝑟𝑛
𝜈 𝑥, 𝑥′ = 𝜎2

21−𝜈

Γ(𝜈)

2𝜈 𝑥−𝑥′

𝑙

𝜈

𝐾𝜈 2𝜈 𝑥 − 𝑥′ ,

• 𝐾𝜈: Modified Bessel function.

• 𝜈 = 𝑑 +
1

2
, where 𝑑 is the order of a polynomial function.

• Examples:

𝑘𝑀𝑎𝑡é𝑟𝑛3/2 𝑥, 𝑥′ = 𝜎2 1 + 3
𝑥−𝑥′

𝑙
𝑒

− 3
𝑥−𝑥′

𝑙 .

𝑘𝑀𝑎𝑡é𝑟𝑛5/2 𝑥, 𝑥′ = 𝜎2 1 + 5
𝑥−𝑥′

𝑙
+

5 𝑥−𝑥′
2

3𝑙2
𝑒

− 5
𝑥−𝑥′

𝑙 .

𝑘𝑀𝑎𝑡é𝑟𝑛1/2 𝑥, 𝑥′ = 𝑘𝑂𝑈 𝑥, 𝑥′ = 𝜎2𝑒
−

𝑥−𝑥′

𝑙 .
• Matern1/2 kernel is also known as Ornstein-Uhlenbeck (OH) kernel.
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Data Augmentation Modes
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By A Single Floor. By Neighboring Floors. By A Single Building.



Experimental Results
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Spatial Distribution of UJIIndoorLoc RPs

• Building 0: Green

• Building 1: Blue

• Building 2: Red
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RNN Structure and Parameters*

Fully Connected 

Layer

Fully Connected 

Layer

LSTM Cell 256 LSTM Cell 256

Common Hidden Layer 

128 - 128

SAE Hidden Layer 

256 - 128 - 64 

Fully Connected 

Layer

Building ID Floor ID (x, y)

RSSI

30* A.E.A. Elesawi and K. S. Kim, “Hierarchical multi-building and multi-floor indoor localization based on
   recurrent neural networks, Proc. CANDARW 2021, Matsue, Japan, pp. 193–196, Nov. 23–26, 2021.



Original and Augmented RSSIs

• For RSSIs from WAP489 based 
on the Matérn5/2 kernel.
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Localization Performance Comparison

Localization
Scheme

Building
Hit Rate [%]

Floor
Hit Rate [%]

3D Error [m]

Proposed* 100 94.20 8.42

Hierarchical RNN1 100 95.23 8.62

MOSAIC2 98.65 93.86 11.64

HFTS2 100 96.25 8.49

RTLS@UM2 100 93.74 6.20

ICSL2 100 86.93 7.67

321. A.E.A. Elesawi and K. S. Kim, Proc. CANDARW 2021, Matsue, Japan, Nov. 2021, pp. 193–196, doi: 10.1109/CANDARW53999.2021.00038.
2. A. Moreira et al. Proc. IPIN 2015, Banff, AB, Canada, Oct. 2015, pp. 1-10, doi: 10.1109/IPIN.2015.7346967.

* Hierarchical RNN1 and the proposed MOGP-based data augmentation with the following options:
• Data augmentation mode: By a single building
• Augmentation ratio: 1
• Number of latent functions (𝑄): 𝑁
• Kernel: Matérn5/2
• Variance (𝜎2): 1
• Length scale (𝑙): 10
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Spatial Distributions of Original and 
Augmented RSSIs

• For the corner of the 4th floor of 
Building 2 of the UJIIndoorLoc DB.
• The red circles indicate two 

potential problems of the lack of 
original RSSI data and insufficient 
RP coverage.



Comparison of Data Augmentation Schemes 
for Indoor Localization

Augmentation
Scheme

Model
Interpretability

Localization
Type

Notes

Proposed High Multi-Building MOGP

s-GAN1 Low Multi-Floor GAN

DataLoc+2 Low Single-Floor Dropout

DL Augmentation3 Low Single-Floor Deep Learning

CAN4 Low Single-Floor Conditional Adversarial 
Networks

DL Approach5 Low Single-Floor AlexNet

Between-Location6 Low Single-Floor Between-Class Learning

34

1. W. Njima et al., IEEE Access 2021, 9, 98337–98347, doi: 10.1109/ACCESS.2021.3095546.
2. A. Hilal et al., Proc. WCNC 2021, doi: 10.1109/WCNC49053.2021.9417246.
3. R. S. Sinha et al., Electronics 2019 8(5), 554, doi: 10.3390/electronics8050554.
4. L. Chen et al., IEEE Access 2020, 8, 26975–26983. doi: 10.1109/ACCESS.2020.2971269.
5. L. Xiao et al., Proc. INTAC 2017, doi: 10.1109/ATNAC.2017.8215428.
6. M. Sugasaki et al., IEEE Sensors Journal 2022, 22, 5407–5416, doi: 10.1109/JSEN.2021.3106765.



Conclusions and Future Work

35



Conclusions

• Proposed MOGP-based multi-dimensional fingerprint data 
augmentation for indoor localization in a large-scale building complex.

• Investigated the effects of MOGP models, augmentation modes and 
ratios, and kernels and their hyperparameters on the localization 
performance through extensive experiments and found the best 
options as follows:
• By a single building.

•
Number of Augmented Data

Number of Origianl Data
= 1.

• LMC with 𝑄 = 𝑁.
• Matérn5/2 kernel with 𝜎2 = 1 and 𝑙 = 10.
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Future Work

• Extension to other MOGP models.

• Extension to other fingerprint databases.

• Extension from spatial to time domain data augmentation.
• This will be based on time-varying fingerprint datasets, which we are 

constructing now on XJTLU campus.
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