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Abstract—Sliding mode controller has wide applications in
control engineering due to its robustness in the input channel, and
the second order twisting sliding mode controller can efficiently
solve the chattering problem invited by discontinuities in classical
sliding mode controller. In this paper the control algorithm for
twisting controller design is derived with a simplified strategy
for parameters’ choice. It is shown that an ideal or real second
order sliding mode is established. A practical example, are
presented using twisting controller design strategy, demonstrate
the effectiveness of the proposed method.

Index Terms—Sliding mode control, Lyapunov function

I. INTRODUCTION

A. Sliding mode control

In practical world, the uncertainties and disturbances are
generally existed in control system, and become a common
issue for designing a robust controller. Hence, the sliding
mode control technique (SMC) is considered the most viable
approach: It reduce the order of dynamical system, constrain
the state variable’s motion on ”sliding surface”. Once the
sliding mode is built, the rest of work is just to ensure that
the internal dynamical system is stable.

Levant (1993) [1] give a basic concept for sliding mode control
[1]: every motion that takes place strictly on the constraint
manifold σ = 0 is called an ideal sliding. Every motion in a
small neighbourhood of the manifold is called a real sliding.

Based on above definitions, for ideal sliding, SMC divides
the whole control process into two stages. Suppose the form
of dynamical system is like:

ẋ = f(x, t, u) (1)

For first-order sliding [1]: on the first stage (transient process),
the control input u drives the state variable x to the sliding
surface S in finite time:

S = {x ∈ Rn|σ(x, t) = 0} (2)

Where σ is called ”sliding variable” (or constraint manifold,
sliding output). Then on the second stage (steady state pro-
cess), the control input u restrict state variable’s motion on
the sliding surface and keep it move along the sliding surface
towards the origin.

Fig. 1. Example phase portrait with sliding control input

Edwards (1998) [2] has shown the basic concept for design-
ing a classical (first-order) sliding mode controller for single-
input single-output system:

u = −ρ sign(σ) (3)

With proper choice of ρ and σ the robustness can been verified
and this controller can completely reject the matched distur-
bances and minimized the unmatched disturbances, however in
this case, the discontinuous control input u causes chattering
problem in practice.

Levant(2003) [3] has basically present the concept for the
second-order sliding mode controller:

For second-order sliding [3]: the whole control process keeps
almost the same with above, where the sliding surface shows
the differences:

S = {x ∈ Rn|σ(x, t) = σ̇(x, t) = 0} (4)

In this case, the control input u is designed as a differential
function, where its derivative u̇ is discontinuous, and only
appears in the second derivative of σ. Hence, the chattering
effect can be expected to be significantly attenuated.

Shtessel(2014) [4] basically shows how to design second-order
twisting controller for the dynamical system x = a(x, t) +
b(x, t)v(t) with σ̈ = f(x, t)+g(x, t)v(t), where |f(x, t)| ≤ C
and 0 < Km ≤ g(x, t) ≤ KM :

u̇ = v

v = −r1 sign(σ)− r2 sign(σ̇)
(5)



with a sufficient condition for finite-time convergence of σ, σ̇
(on transient process):

(r1 + r2)Km − C > (r1 − r2)KM + C (6)
(r1 − r2)Km − C > 0 (7)

However, how to allocate the parameters r1 and r2 becomes a
trouble in practical implementation when using the inequalities
above to design twisting controller.

Based on their works above, this essay will finish two targets:
• Explore a simplified condition for sliding mode twisting

controller design
• Stability analysis by Lyapunov candidate test.
• Discuss the best proportion for allocating r1 and r2

(8)

B. Lyapunov candidate test

Shankar Sastry (1999) [5] has basically give methods
for stability analysis using Lyapunov function. Moreover,
Mobayen(2023) [6] mentioned that if v̇ + mvα ≤ 0 with
m > 0, α ∈ (0, 1) where v is positive definite function and
decrescent function, then v will converge to zero in time ts:

ts =
v(t0)

1−α

m(1− α)
(9)

II. PROBLEM FORMULATION

A. Problem explanation

For the dynamical system, suppose the form is like:

ẋ = a(x, t) + b(x, t)u(t) (10)

where x(t) ∈ Rn, u(t) ∈ R are state variable of system and
control input respectively. Denote that u is designed to be
differentiable equation which u̇ = v.

Then, we have that:

σ̇ = σx(a+ bu) + σt (11)

and

σ̈ = σ̇t + σ̇x(a+ bu) + σ̇uv (12)
= σ̇t + σ̇x(a+ bu) + σxbv (13)

Then, by separation, let

f(x, t) = σ̇t + σ̇x(a+ bu) (14)
g(x, t) = σxb (15)

By substituting (15) and (16) in (14), σ̈ can be rewritten as:

σ̈ = f(x, t) + g(x, t)v(t) (16)

By letting s =

[
s1
s2

]
=

[
σ
σ̇

]
The dynamical system for sliding

variable σ is also considered as:

ṡ1(x, t) = s2(x, t)

ṡ2(x, t) = f(x, t) + g(x, t)v(t)
(17)

Where s1, s2 ∈ R, if the following assumption is satisfied:

f ∈ [−C,C] (for some C > 0) (A1)
g ∈ [Km,KM ] ( for some KM > Km > 0) (A2)

Then, design sliding mode twisting controller as:

u̇ = v

v = −a(sign(s1) +
1

p
sign(s2)) (a > 0, p > 1)

(18)

For above control law, a proper Lyapunov function is designed
below to explore a simplified condition for control gain a and
proportion p to achieve a finite-time convergence for s. In
addition, the ”best proportion p” will be discussed to make
sure that with the best proportion p, the amplitude of v can
close to its infimum.

B. Stability analysis

Design the lyapunov function according to Shtessel(2017)
[7] as:

v0(s1, s2) = k20a
2s21 + γ|s1|

3
2 sign(s1)s2 + k0a|s1|s22 +

1

4
s22

(19)
with some k0 > 0 and γ > 0 which will be defined later.
The whole stability analysis process is divided into three steps:
• v0 is a positive definite function.
• v0 is a decrescent function.
• v̇0 satisfies the relationship v̇0 + mvα0 ≤ 0 for some m >
0, α ∈ (0, 1).
Firstly, in order to say that ”v0 is a positive definite function.”,
we rewrite v0 as:

v0 = zTAz+
1

4
s42 (20)

where

z =
[
s1 |s1|

1
2 s2

]T
A =

[
k20a

2 γ
2

γ
2 k0a

]
(21)

In order to get a positive definite matrix A, a sufficient
condition is to let both the trace of A and determinant of
A be positive:

tr(A) = k20a
2 + k0a (22)

det(A) = k30a
3 − γ2

4
(23)

with above equation, the trace is always positive with positive
k0 and a. Besides, the determinant will be positive when
setting γ ∈ (0, 2(k0a)

1.5) . Thus, with γ ∈ (0, 2(k0a)
1.5), A is

positive definite. Furthermore, in view of Rayleigh principle:

λmin(A)||z||22 ≤ zTAz ≤ λmax(A)||z||22 (24)

Thus, eqs.(20) can be modified as:

v0 ≥ λmin(A)(|s1|2 + |s1||s2|2) +
1

4
s42 (25)

≥ λmin(A)|s1|2 +
1

4
s42 (26)



Since A > 0 ⇒ λmin(A) > 0, v0 is a positive definite
function.

Secondly, in order to say that v0 is a decrescent function, we
modify eqs(20) as:

v0 ≤ λmax(A)(|s1|2 + |s1||s2|2) +
1

4
s42 (27)

≤ λmax(A)(|s1|2 +
1

2
|s1|2 +

1

2
s42) +

1

4
s42 (28)

=
3

2
λmax(A)s21 +

1

2
(λmax(A) +

1

2
)s42 (29)

= kTQk (30)

where

k =
[
s1 s22

]
Q =

[
3
2λmax(A) 0

0 1
2 (λmax(A) + 1

2 )

]
(31)

By positive definite matrix A, Q is also positive definite. Then,
by Rayleigh principle, (30) can be modified as:

v0 ≤ λmax(Q)(s21 + s42) (32)

In view of inequality (Hardy, Littlewood, & G.polya, 1951)
[8]:

(Σn
i=1α

s
i )

1
s ≤ (Σn

j=1α
r
j)

1
r

(for any 0 < r < s, α1, α2, ..., αn > 0)
(33)

(32) can be modified as:

v0 ≤ λmax(Q)(|s1|
1
2 + |s2|)4 (34)

Thus, v0 is a decrescent function. Thirdly, compute the deriva-
tive v̇:

v̇0 = (2k20a
2s1 +

3

2
γ|s1|

1
2 s2 + k0a sign(s1)s22)ṡ1+

(γ|x| 32 sign(s1) + 2k0a|s1|s2 + s32)ṡ2

(35)

substitute (18) into (35):

v̇0 = −γ|s1|
3
2 [ag +

ag

p
sign(s1s2)− f sign(s1)]− 2k0a|s1|

|s2|[ag sign(s1s2) +
ag

p
− f sign(s2)− k0a sign(s1s2)]−

|s2|3[ag sign(s1s2) +
ag

p
− f sign(s2)− k0a sign(s1s2)]+

3

2
γ|s1|

1
2 s22

(36)
Where

ag +
ag

p
sign(s1s2)− f sign(s1) ≥

p− 1

p
ag − C

≥ p− 1

p
aKm − C

(37)

and

ag sign(s1s2) +
ag

p
− f sign(s2)− k0a sign(s1s2)

≥ −a|g − k0|+
ag

p
− C

= min{−p− 1

p
ag + ak0 − C,

p+ 1

p
ag − ak0 − C}

≥ min{−p− 1

p
aKM + ak0 − C,

p+ 1

p
aKm − ak0 − C}

(38)
By setting d1 = p−1

p aKm−C, d2 = min{−p−1
p aKM+ak0−

C, p+1
p aKm − ak0 − C}, (36) can be rewritten as:

v̇0 ≤ −γ|s1|
3
2 d1 −wTPw (39)

where

w =
[
|s1|

1
2 |s2|

1
2 |s2|

3
2

]
(40)

P =

[
2k0ad2 − 3

4γ
− 3

4γ d2

]
(41)

In order to let v̇0 be negative, a sufficient condition is to let
d1 be positive and P be positive definite, which is equivalent
to let d1, tr(P), and det(P) be positive:

tr(P) = (2k0a+ 1)d2 (42)

det(P) = 2k0ad
2
2 −

9

16
γ2 (43)

From (39), in order to let d1 be positive, we set:

a >
p

p− 1

C

Km
(44)

From (42) and (43), In order to let tr(P) > 0 and det(P) > 0,
we need to let d2 > 0 and γ < 4

3

√
2k0ad2. On the one hand,

combined with the previous condition γ ∈ (0, 2(k0a)
1.5), we

get the condition for choosing γ:

γ ∈ (0,min{2(k0a)1.5,
4

3

√
2k0ad2}) (45)

On the other hand, in order to let d2 be positive, we set:

k0 >
p− 1

p
KM +

C

a
(46)

k0 <
p+ 1

p
Km − C

a
(47)

In order to let k0 be well-defined, we have that:

p− 1

p
KM +

C

a
<

p+ 1

p
Km − C

a
(48)

⇒a[
p+ 1

2p
Km − p− 1

2p
KM ] > C (49)

From (46), (47), we set k0 as the midpoint of (p−1
p KM +

C
a ,

p+1
p Km − C

a ):

k0 =
p+ 1

2p
Km +

p− 1

2p
KM (50)



Thus, if conditions (44), (45), (49), (50) is satisfied, P would
be positive definite and d2 > 0. Then

v̇0 ≤ −γ|s1|
3
2 d2 − λmin(P)(|s1||s2|+ |s2|3) (51)

≤ −γd2|s1|
3
2 − λmin(P)|s2|3 (52)

≤ −K(|s1|
3
2 + |s2|3) (53)

where

K = min{λmin(P), γd2} (54)

in view of inequality (Hardy, Littlewood, & G.polya, 1951)
[8]:

(
1

n
Σn

i=1α
r
i )

1
r ≤ (

1

n
Σn

j=1α
s
j)

1
s

(for any 0 < r < s, α1, α2, ..., αn > 0)
(55)

(53) can be modified as:

v̇0 ≤ −K

4
[|s1|

1
2 + |s2|]3 (56)

Combine (34) with (56):

v̇0 ≤ − K

4(λmax(Q))
3
4

v
3
4
0 (57)

Thus, with eqs.(57), it’s sufficient to claim that finite-time con-
vergence is achieved by such designed sliding mode twisting
controller, and an ideal sliding mode or real sliding mode is
established.1

C. best proportion p

Next step is to discuss the relationship between the ampli-
tude of v which is denoted by r and the proportion:

r = a(1 +
1

p
) (58)

and find the value of p so that r can be close to its minimum.
Firstly, remark the two inequalities from above:

a[
p+ 1

2p
Km − p− 1

2p
KM ] > C (59)

a >
p

p− 1

C

Km
(60)

Note that p+1
2p Km− p−1

2p KM must be positive by requirement,
so we have an extra condition for p:

(p+ 1)Km > (p− 1)KM

⇒p <
Km +KM

KM −Km

(61)

we conclude that

a > max
p∈(1,

Km+KM
KM−Km

)

{
C

[p+1
2p Km − p−1

2p KM ]
,

C
p−1
p Km

}
(62)

which follows that

r > max
p∈(1,

Km+KM
KM−Km

)

{
C

1
2Km − p−1

2(p+1)KM

,
C

p−1
p+1Km

}
(63)

Now, our aim is to find the minimum of right side by proper
p. If we denote that:

c =
p− 1

p+ 1
(0 < c <

Km

KM
) (64)

h(c) =
C

[ 12Km − c
2KM ]

(65)

q(c) =
C

cKm
(66)

Then (63) can be rewritten as:

r > max
c∈(0, Km

KM
)
{h(c), q(c)} (67)

it’s easy to see that when c is increasing, h(c) increases and
q(c) decreases, in addition, limc→0 q(c) → ∞. Thus, if h(c) =
q(c), the right side of (67) reaches its minimum:

f(c) = q(c)

⇒1

2
Km − c

2
KM = cKm

⇒c =
Km

KM + 2Km

⇒p =
KM + 3Km

Km +KM

(68)

Combined with (62), (63), we have that

r >
(KM + 2Km)

K2
m

C (69)

a >
3Km +KM

2K2
m

C (70)

Remark 1. Since ”the best proportion p” is determined by
Km, KM , moreover, Km, KM are determined by g = σXb.
Therefore, we say that the ”best proportion p” is determined
by σx, where σ is a designed sliding variable.

III. MAIN RESULT

Theorem 1. For dynamical system (10) for x, and dynamical
system (17) for s, if the assumption (A1) and (A2) hold, the
sliding mode twisting controller can be designed as :

u̇ = v

v = a( sign(s1) +
Km +KM

3Km +KM
sign(s2))

(71)

with condition:

a >
3Km +KM

2K2
m

C (72)

With the control law (71), and condition (72), finite-time
convergence of s can be achieved, and the convergence time
ts can be estimated as:

ts ≤
16(λmax(Q))

3
4 v0(t0)

1
4

K
(73)

where

v0 = k20a
2s21 + γ|s1|

3
2 sign(s1)s2 + k0a|s1|s22 +

1

4
s22 (74)



with

γ ∈ (0,min{2(k0a)
3
2 ,

4

3

√
2k0ad2}

K = min{λmin(P), γd2}
(75)

where

k0 =
2Km +KM

3Km +KM
Km +

Km

3Km +KM
KM

d2 = min{− 2Km

3Km +KM
aKM + ak0 − C,

4Km + 2KM

3Km +KM
aKm − ak0 − C}

Q =

[
3
2λmax(A) 0

0 1
2 (λmax(A) + 1

2 )

]
P =

[
2k0ad2 − 3

4γ
− 3

4γ d2

]
(76)

Moreover, when the control gain ”a” tends to 3Km+KM

2K2
m

C,
the amplitude of v (denoted by ”r”) tends to its infimum:
KM+2Km

K2
m

C

IV. PRACTICAL EXAMPLE

Considering the problem of controlling the angular position
of the shaft in a DC motor. Assume TL = 0, The process
of construction of dynamic equations for θ, ω, i are similar as
Belanger [9], and are omitted:

d

dt

θω
i

 =

0 1 0

0 0 Nkm

Je

0 −Nkm

L −R
L

θω
i

+

0
0
1
L

 v (77)

with relationship
Je = J +N2Jm (78)

Where armature voltage v is the control input, The gear ratio
N is the ratio of angles and velocities of the two shafts;
The torques have the same ratio. R and L are the resistance
and inductance of the armature circuit respectively. The motor
drives a load with moment of inertia J , and the rotor of the
dc motor has inertia Jm.

To design a continuous control input v, claim that

v = v0 +

∫ t

0

w(τ)dτ (79)

A. Analysis

For the specific values according to Belanger [9]: km =
0.05Nm/A, R = 1.2Ω, L = 0.05H , Jm = 0.0008 kgm2,
J = 0.020kgm2 and N = 12, Design the sliding surface
which is the same as Edwards [2]: set

x =

θω
i

 S =
[
0.9013 0.8563 1

]
(80)

S = {(θ, ω, i) ∈ R3|σ1 = S ∗ x = 0} (81)

For the sliding variable σ1 = S ∗ x, denote that A =

θω
i

 =0 1 0

0 0 Nkm

Je

0 −Nkm

L −R
L

 is the system matrix, and B =

0
0
1
L

 is

the input distribution matrix. Then the system equations can
be rewritten as :

ẋ = Ax+Bv (82)

For the sliding variable s1 = S∗x, the corresponding dynamic
system for s = [s1, s2]

T becomes

ṡ1(t) = s2(t) = S(Ax(t) +Bv(t)) (83)
ṡ2(t) = S[A(Ax(t) +Bv(t)) +Bw(t)] (84)

Then, to apply twisting controller design strategy, estimate the
parameter C, Km, KM as following:

C = ||SAA||||x(t)||max + ||SAB||||v(t)||max (85)
Km = KM = ||SB|| (86)

With the system above, set the proportion p:

p =
3Km +KM

Km +KM
= 2 (87)

and
w = −a(sign(σ1) +

1

2
sign(σ2)) (88)

Set the initial value x = [1, 0, 0]T , then we have initial value
for s:

s1(0) = 0.9013 > 0 (89)
s2(0) = 20v(0) (90)

In order to limit the amplitude of v, choose initial value of
v(0) = v0 = −0.1 such that s2(0) < 0, then initial value
w(0) = w0 becomes

w0 = −a ∗ (1− 1

2
) = −1

2
a (91)

This will make the control input v changes in a ”slow mode”
for a period of time at the beginning until s1s2 > 0. Assume
that during the control process, the ||x(t)||max ≤ 2||x(0)|| =
2, ||v(t)||max ≤ 2||v(0)|| = 2 then according to theorem 1,
the twisting controller is designed as:

w = −(
4||SAA||+ 4||SAB||

||SB||
)(sign(s1)+

1

2
sign(s2)) (92)



B. Simulation result
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Fig. 2. states θ, ω, i
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Fig. 3. phase portrait of s1 and s2

From the above picture, the state variables and sliding
variables converge to zero finally.

Fig. 4. control input voltage v
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Compare to the results of Edwards [2] in which the classical
sliding mode control strategy is applied, the amplitude of
control input voltage v here has been effectively reduced from
-2 to 0.

V. CONCLUSION

This essay basically discuss the details for construction
of ”twisting” controller, mainly focus on the simplifying the
sufficient condition given by Shtessel(2014) [4], and find the
best proportion p. During the process, the amplitude of u can
be reduced.

However, this is the single-input case, for more general case
like multi-input multi-sliding output case, the corresponding
proper Lyapunov function for stability analysis should be
reconsidered. Furthermore, in practical use, generally the
estimation of the parameter C are difficult, this is also a
predicament for reducing the amplitude of control input.

Next step this method is considered to be extended to the
multi-input case where more details of designing ”twisting”
controller will be explored. The research was partly supported
by XJTLU RDF-22-01-050.
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