Wavelet-based texture model for crowd dynamic analysis

Jing Wang, Zhijie Xu, Yanlong Cao, Yuanping Xu

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

1 Citation (Scopus)

Abstract

Crowd event detection techniques aim at solving real-world surveillance problems, such as detecting crowd anomaly and tracking specific person in a highly dynamic crowd scene. In this paper, we proposed an innovate texture-based analysis method to model crowd dynamics and us it to distinguish the crowd behaviours. To describe complicated crowd scenes, homogeneous random features have been deployed in the research for behavioural template matching. Experiment results have shown that the anomaly appearing in crowd scenes can be effectively and efficiently identified by using the devised methods.

Original languageEnglish
Title of host publicationICAC 2017 - 2017 23rd IEEE International Conference on Automation and Computing
Subtitle of host publicationAddressing Global Challenges through Automation and Computing
EditorsJie Zhang
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9780701702618
DOIs
Publication statusPublished - 23 Oct 2017
Externally publishedYes
Event23rd IEEE International Conference on Automation and Computing, ICAC 2017 - Huddersfield, United Kingdom
Duration: 7 Sept 20178 Sept 2017

Publication series

NameICAC 2017 - 2017 23rd IEEE International Conference on Automation and Computing: Addressing Global Challenges through Automation and Computing

Conference

Conference23rd IEEE International Conference on Automation and Computing, ICAC 2017
Country/TerritoryUnited Kingdom
CityHuddersfield
Period7/09/178/09/17

Keywords

  • Component
  • Crowd dynamics
  • Spatio-temporal volume
  • Texture model

Fingerprint

Dive into the research topics of 'Wavelet-based texture model for crowd dynamic analysis'. Together they form a unique fingerprint.

Cite this