Theoretical and experimental investigation of material removal mechanism in compliant shape adaptive grinding process

Wu Le Zhu, Yue Yang, Hao Nan Li, Dragos Axinte, Anthony Beaucamp*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

80 Citations (Scopus)


Modeling of grinding process, especially the grinding forces, has been studied extensively. Most previous work concerns the conventional grinding process using a rigid wheel, where the forces are generally based on the preset depth of grinding. However, for compliant grinding such as Shape Adaptive Grinding (SAG) that adopts an elastic tool covered with abrasive pellets, the penetration depth of individual abrasive grains is not simply equal to the preset value. As elastic contact occurs between the tool and workpiece, previous models are not able to estimate the material removal mechanism. Besides, the progressive transitions in grain-workpiece interaction for compliant cutting tools have not been reported yet. To fill these gaps and to offer a fundamental understanding of the compliant grinding process, we propose in this study a new multi-scale model spanning from macroscopic tool-workpiece contact to microscopic grain-workpiece interaction in the unique conditions of using a compliant grinding tool, i.e. SAG tool. Based on the spring-grain model and considering the stochastic nature of grain size and wear flat area, the static penetration and dynamic removal of individual grain can be predicted. Particularly, the removal mechanism is clarified with a new consideration of the transition between rubbing, plowing and cutting stages for each individual grain of the compliant tool. Experiments including scratch tests and removal footprints were carried out, and the high consistency with theoretical predictions validates the proposed model. Finally, considering the progressive abrasive wear in grinding, in-process wear compensation was conducted to enable consistent material removal on aspheric steel molds. The proposed method is not only meaningful to reveal the mechanism of SAG process, but also offers a new foundation for studying other compliant grinding processes in future.

Original languageEnglish
Pages (from-to)76-97
Number of pages22
JournalInternational Journal of Machine Tools and Manufacture
Publication statusPublished - Jul 2019
Externally publishedYes


  • Grinding force
  • Material removal mechanism
  • Shape adaptive grinding
  • Tool wear


Dive into the research topics of 'Theoretical and experimental investigation of material removal mechanism in compliant shape adaptive grinding process'. Together they form a unique fingerprint.

Cite this