The Identification of Significant Mechanomyography Time-Domain Features for the Classification of Knee Motion

Tarek Mohamed Mahmoud Said Mohamed, Muhammad Amirul Abdullah, Hasan Alqaraghuli, Rabiu Muazu Musa, Ahmad Fakhri Ab Nasir, Mohd Azraai Mohd Razman, Mohd Yazid Bajuri, Anwar P. P. Abdul Majeed*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Stroke is the third leading cause of long term disability in the world. More often than not, the patients who suffer from such cerebrovascular disease endure restricted activities of daily living (ADL). Rehabilitation is deemed necessary to improve ones ADL, especially in the early stages of stroke. This study presents the classification of knee motion; particularly extension and flexion, based on muscle signals that could be utilised by an exoskeleton for rehabilitation purpose. A total of 20 subjects participated in the present investigation. The mechanomyography (MMG) signals were collected by accelerometers placed on four of the muscles that control the knee joint, namely, Rectus Femoris, Gracilis, Vastus Medialis, and Biceps Femoris, respectively. Eight statistical features were extracted from the raw data, i.e., root mean square (RMS), variance (VAR), mean, standard deviation (STD), kurtosis, skewness, minimum, and maximum along all x, y and z-axes. The Chi-Square (χ2) feature selection technique was used to identify significant features, in which 30 was identified amongst the 96 extracted features. A 10-fold cross-validation technique was employed in training a Support Vector Machine (SVM) model on a dataset that was partitioned with a ration of 80:20 for train and test, respectively. It was demonstrated in the present investigation that through the reduction of features, the test accuracy increased from 83.3 to 90%, suggesting the importance of the selected features. The findings from the study could pave the way for its adoption on a knee-based exoskeleton for rehabilitation.

Original languageEnglish
Title of host publicationRecent Trends in Mechatronics Towards Industry 4.0 - Selected Articles from iM3F 2020
EditorsAhmad Fakhri Ab. Nasir, Ahmad Najmuddin Ibrahim, Ismayuzri Ishak, Nafrizuan Mat Yahya, Muhammad Aizzat Zakaria, Anwar P. P. Abdul Majeed
PublisherSpringer Science and Business Media Deutschland GmbH
Pages313-319
Number of pages7
ISBN (Print)9789813345966
DOIs
Publication statusPublished - 2022
Externally publishedYes
EventInnovative Manufacturing, Mechatronics and Materials Forum, iM3F 2020 - Gambang, Malaysia
Duration: 6 Aug 20206 Aug 2020

Publication series

NameLecture Notes in Electrical Engineering
Volume730
ISSN (Print)1876-1100
ISSN (Electronic)1876-1119

Conference

ConferenceInnovative Manufacturing, Mechatronics and Materials Forum, iM3F 2020
Country/TerritoryMalaysia
CityGambang
Period6/08/206/08/20

Keywords

  • Feature selection
  • Knee motion
  • Machine learning
  • Mechanomyography
  • Rehabilitation

Fingerprint

Dive into the research topics of 'The Identification of Significant Mechanomyography Time-Domain Features for the Classification of Knee Motion'. Together they form a unique fingerprint.

Cite this