Tet1 is critical for neuronal activity-regulated gene expression and memory extinction

Andrii Rudenko, Meelad M. Dawlaty, Jinsoo Seo, Albert W. Cheng, Jia Meng, Thuc Le, Kym F. Faull, Rudolf Jaenisch*, Li Huei Tsai

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

353 Citations (Scopus)


The ten-eleven translocation (Tet) family of methylcytosine dioxygenases catalyze oxidation of 5-methylcytosine(5mC) to 5-hydroxymethylcytosine (5hmC) and promote DNA demethylation. Despite the abundance of 5hmC and Tet proteins in the brain, little is known about the functions of the neuronal Tet enzymes. Here, we analyzed Tet1 knockout mice (Tet1KO) and found downregulation of multiple neuronal activity-regulated genes, including Npas4, c-. Fos, and Arc. Furthermore, Tet1KO animals exhibited abnormal hippocampal long-term depression and impaired memory extinction. Analysis of the key regulatory gene, Npas4, indicated that its promoter region, containing multiple CpG dinucleotides, is hypermethylated in both naive Tet1KO mice and after extinction training. Such hypermethylation may account for the diminished expression of Npas4 itself and its downstream targets, impairing transcriptional programs underlying cognitive processes. In summary, we show that neuronal Tet1 regulates normal DNA methylation levels, expression of activity-regulated genes, synaptic plasticity, and memory extinction

Original languageEnglish
Pages (from-to)1109-1122
Number of pages14
Issue number6
Publication statusPublished - 18 Sept 2013
Externally publishedYes

Cite this