Stock Price Prediction with Sentiment Analysis for Chinese Market

Yuchen Luan, Haiyang Zhang*, Chenlei Zhang, Yida Mu, Wei Wang

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review


Accurate prediction of stock prices is considered as a significant practical challenge and has been a longstanding topic of debate within the economic domain. In recent years, sentiment analysis on social media comments has been considered an important data source for stock prediction. However, most of these works focus on exploring stocks with high market values or from specific industries. The extent to which sentiments affect a broader range of stocks and their overall performance remains uncertain. In this paper, we study the influence of sentiment analysis on stock price prediction with respect to (1) different market value groups and (2) different Book-to-Market ratio groups in the Chinese stock market. To this end, we create a new dataset that consists of 24 stocks across different market value groups and Book-to-Market ratio categories, along with 12,000 associated comments that have been collected and manually annotated. We then utilized this dataset to train a variety of sentiment classifiers, which were subsequently integrated into sequential neural-based models for stock price prediction. Experimental findings indicate that while sentiment integration generally improve the predictive performance for price prediction, it may not consistently lead to better results for individual stocks. Moreover, these outcomes are notably influenced by varying market values and Book-to-Market ratios, with stocks of higher market values and B/M ratios often exhibiting more accurate predictions. Among all the models tested, the Bi-LSTM model incorporated with the sentiment analysis, achieves the best prediction performance.
Original languageEnglish
Title of host publicationProceedings of the Joint Workshop of the 7th Financial Technology and Natural Language Processing, the 5th Knowledge Discovery from Unstructured Data in Financial Services, and the 4th Workshop on Economics and Natural Language Processing @ LREC-COLING 2024
EditorsChung-Chi Chen, Xiaomo Liu, Udo Hahn, Armineh Nourbakhsh, Zhiqiang Ma, Charese Smiley, Veronique Hoste, Sanjiv Ranjan Das, Manling Li, Mohammad Ghassemi, Hen-Hsen Huang, Hiroya Takamura, Hsin-Hsi Chen
Place of PublicationTorino, Italia
PublisherELRA and ICCL
Number of pages11
Publication statusPublished - 1 May 2024


Dive into the research topics of 'Stock Price Prediction with Sentiment Analysis for Chinese Market'. Together they form a unique fingerprint.

Cite this