Spatio-Temporal Similarity Measure based Multi-Task Learning for Predicting Alzheimer's Disease Progression using MRI Data

Xulong Wang, Yu Zhang, Menghui Zhou, Tong Liu, Jun Qi, Po Yang*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Identifying and utilising various biomarkers for tracking Alzheimer's disease (AD) progression have received many recent attentions and enable helping clinicians make the prompt decisions. Traditional progression models focus on extracting morphological biomarkers in regions of interest (ROIs) from MRI/PET images, such as regional average cortical thickness and regional volume. They are effective but ignore the relationships between brain ROIs over time, which would lead to synergistic deterioration. For exploring the synergistic deteriorating relationship between these biomarkers, in this paper, we propose a novel spatio-temporal similarity measure based multi-task learning approach for effectively predicting AD progression and sensitively capturing the critical relationships between biomarkers. Specifically, we firstly define a temporal measure for estimating the magnitude and velocity of biomarker change over time, which indicate a changing trend(temporal). Converting this trend into the vector, we then compare this variability between biomarkers in a unified vector space(spatial). The experimental results show that compared with directly ROI based learning, our proposed method is more effective in predicting disease progression. Our method also enables performing longitudinal stability selection to identify the changing relationships between biomarkers, which play a key role in disease progression. We prove that the synergistic deteriorating biomarkers between cortical volumes or surface areas have a significant effect on the cognitive prediction.

Original languageEnglish
Title of host publicationProceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
EditorsXingpeng Jiang, Haiying Wang, Reda Alhajj, Xiaohua Hu, Felix Engel, Mufti Mahmud, Nadia Pisanti, Xuefeng Cui, Hong Song
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages940-943
Number of pages4
ISBN (Electronic)9798350337488
DOIs
Publication statusPublished - 2023
Event2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023 - Istanbul, Turkey
Duration: 5 Dec 20238 Dec 2023

Publication series

NameProceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023

Conference

Conference2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
Country/TerritoryTurkey
CityIstanbul
Period5/12/238/12/23

Keywords

  • Alzheimer's disease
  • brain biomarker correlation
  • cosine similarity
  • multi-task learning

Fingerprint

Dive into the research topics of 'Spatio-Temporal Similarity Measure based Multi-Task Learning for Predicting Alzheimer's Disease Progression using MRI Data'. Together they form a unique fingerprint.

Cite this