TY - GEN
T1 - Spatio-Temporal Similarity Measure based Multi-Task Learning for Predicting Alzheimer's Disease Progression using MRI Data
AU - Wang, Xulong
AU - Zhang, Yu
AU - Zhou, Menghui
AU - Liu, Tong
AU - Qi, Jun
AU - Yang, Po
N1 - Publisher Copyright:
© 2023 IEEE.
PY - 2023
Y1 - 2023
N2 - Identifying and utilising various biomarkers for tracking Alzheimer's disease (AD) progression have received many recent attentions and enable helping clinicians make the prompt decisions. Traditional progression models focus on extracting morphological biomarkers in regions of interest (ROIs) from MRI/PET images, such as regional average cortical thickness and regional volume. They are effective but ignore the relationships between brain ROIs over time, which would lead to synergistic deterioration. For exploring the synergistic deteriorating relationship between these biomarkers, in this paper, we propose a novel spatio-temporal similarity measure based multi-task learning approach for effectively predicting AD progression and sensitively capturing the critical relationships between biomarkers. Specifically, we firstly define a temporal measure for estimating the magnitude and velocity of biomarker change over time, which indicate a changing trend(temporal). Converting this trend into the vector, we then compare this variability between biomarkers in a unified vector space(spatial). The experimental results show that compared with directly ROI based learning, our proposed method is more effective in predicting disease progression. Our method also enables performing longitudinal stability selection to identify the changing relationships between biomarkers, which play a key role in disease progression. We prove that the synergistic deteriorating biomarkers between cortical volumes or surface areas have a significant effect on the cognitive prediction.
AB - Identifying and utilising various biomarkers for tracking Alzheimer's disease (AD) progression have received many recent attentions and enable helping clinicians make the prompt decisions. Traditional progression models focus on extracting morphological biomarkers in regions of interest (ROIs) from MRI/PET images, such as regional average cortical thickness and regional volume. They are effective but ignore the relationships between brain ROIs over time, which would lead to synergistic deterioration. For exploring the synergistic deteriorating relationship between these biomarkers, in this paper, we propose a novel spatio-temporal similarity measure based multi-task learning approach for effectively predicting AD progression and sensitively capturing the critical relationships between biomarkers. Specifically, we firstly define a temporal measure for estimating the magnitude and velocity of biomarker change over time, which indicate a changing trend(temporal). Converting this trend into the vector, we then compare this variability between biomarkers in a unified vector space(spatial). The experimental results show that compared with directly ROI based learning, our proposed method is more effective in predicting disease progression. Our method also enables performing longitudinal stability selection to identify the changing relationships between biomarkers, which play a key role in disease progression. We prove that the synergistic deteriorating biomarkers between cortical volumes or surface areas have a significant effect on the cognitive prediction.
KW - Alzheimer's disease
KW - brain biomarker correlation
KW - cosine similarity
KW - multi-task learning
UR - http://www.scopus.com/inward/record.url?scp=85184935136&partnerID=8YFLogxK
U2 - 10.1109/BIBM58861.2023.10385644
DO - 10.1109/BIBM58861.2023.10385644
M3 - Conference Proceeding
AN - SCOPUS:85184935136
T3 - Proceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
SP - 940
EP - 943
BT - Proceedings - 2023 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
A2 - Jiang, Xingpeng
A2 - Wang, Haiying
A2 - Alhajj, Reda
A2 - Hu, Xiaohua
A2 - Engel, Felix
A2 - Mahmud, Mufti
A2 - Pisanti, Nadia
A2 - Cui, Xuefeng
A2 - Song, Hong
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
Y2 - 5 December 2023 through 8 December 2023
ER -