Semiclassical limit of the derivative nonlinear Schrödinger equation

Benoît Desjardins*, Chi Kun Lin, Tai Cheng Tso

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

25 Citations (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 25
  • Captures
    • Readers: 1
see details

Abstract

We study the semiclassical limit of the general derivative nonlinear Schrödinger equation for initial data with Sobolev regularity, before shocks appear in the limit system. The strict hyperbolicity and genuine nonlinearity is proved for the dispersion limit of the derivative nonlinear Schrödinger equation.

Original languageEnglish
Pages (from-to)261-285
Number of pages25
JournalMathematical Models and Methods in Applied Sciences
Volume10
Issue number2
DOIs
Publication statusPublished - Mar 2000
Externally publishedYes

Cite this

Desjardins, B., Lin, C. K., & Tso, T. C. (2000). Semiclassical limit of the derivative nonlinear Schrödinger equation. Mathematical Models and Methods in Applied Sciences, 10(2), 261-285. https://doi.org/10.1142/S0218202500000161