Self-Assembled Porous-Reinforcement Microstructure-Based Flexible Triboelectric Patch for Remote Healthcare

Hao Lei, Haifeng Ji, Xiaohan Liu, Bohan Lu, Linjie Xie, Eng Gee Lim, Xin Tu, Yina Liu, Peixuan Zhang, Chun Zhao*, Xuhui Sun*, Zhen Wen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

17 Citations (Scopus)

Abstract

Realizing real-time monitoring of physiological signals is vital for preventing and treating chronic diseases in elderly individuals. However, wearable sensors with low power consumption and high sensitivity to both weak physiological signals and large mechanical stimuli remain challenges. Here, a flexible triboelectric patch (FTEP) based on porous-reinforcement microstructures for remote health monitoring has been reported. The porous-reinforcement microstructure is constructed by the self-assembly of silicone rubber adhering to the porous framework of the PU sponge. The mechanical properties of the FTEP can be regulated by the concentrations of silicone rubber dilution. For pressure sensing, its sensitivity can be effectively improved fivefold compared to the device with a solid dielectric layer, reaching 5.93 kPa−1 under a pressure range of 0–5 kPa. In addition, the FTEP has a wide detection range up to 50 kPa with a sensitivity of 0.21 kPa−1. The porous microstructure makes the FTEP ultra-sensitive to external pressure, and the reinforcements endow the device with a greater deformation limit in a wide detection range. Finally, a novel concept of the wearable Internet of Healthcare (IoH) system for real-time physiological signal monitoring has been proposed, which could provide real-time physiological information for ambulatory personalized healthcare monitoring.[MediaObject not available: see fulltext.]

Original languageEnglish
Article number109
JournalNano-Micro Letters
Volume15
Issue number1
DOIs
Publication statusPublished - Dec 2023

Keywords

  • Internet of Healthcare
  • Physiological signals
  • Porous dielectric layer
  • Pressure sensor
  • Triboelectric nanogenerator

Fingerprint

Dive into the research topics of 'Self-Assembled Porous-Reinforcement Microstructure-Based Flexible Triboelectric Patch for Remote Healthcare'. Together they form a unique fingerprint.

Cite this