Robust Sub-Meter Level Indoor Localization - A Logistic Regression Approach

Chenlu Xiang, Zhichao Zhang, Shunqing Zhang, Shugong Xu, Shan Cao, Vincent Lau

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

8 Citations (Scopus)

Abstract

Indoor localization becomes a raising demand in our daily lives. Due to the massive deployment in the indoor environment nowadays, WiFi systems have been applied to high accurate localization recently. Although the traditional model based localization scheme can achieve sub-meter level accuracy by fusing multiple channel state information (CSI) observations, the corresponding computational overhead is significant. To address this issue, the model-free localization approach using deep learning framework has been proposed and the classification based technique is applied. In this paper, instead of using classification based mechanism, we propose to use a logistic regression based scheme under the deep learning framework, which is able to achieve sub-meter level accuracy (97.2cm medium distance error) in the standard laboratory environment and maintain reasonable online prediction overhead under the single WiFi AP settings. We hope the proposed logistic regression based scheme can shed some light on the model-free localization technique and pave the way for the practical deployment of deep learning based WiFi localization systems.

Original languageEnglish
Title of host publication2019 IEEE International Conference on Communications, ICC 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781538680889
DOIs
Publication statusPublished - May 2019
Externally publishedYes
Event2019 IEEE International Conference on Communications, ICC 2019 - Shanghai, China
Duration: 20 May 201924 May 2019

Publication series

NameIEEE International Conference on Communications
Volume2019-May
ISSN (Print)1550-3607

Conference

Conference2019 IEEE International Conference on Communications, ICC 2019
Country/TerritoryChina
CityShanghai
Period20/05/1924/05/19

Fingerprint

Dive into the research topics of 'Robust Sub-Meter Level Indoor Localization - A Logistic Regression Approach'. Together they form a unique fingerprint.

Cite this