TY - JOUR
T1 - Rich club characteristics of dynamic brain functional networks in resting state
AU - Jiao, Zhuqing
AU - Wang, Huan
AU - Cai, Min
AU - Cao, Yin
AU - Zou, Ling
AU - Wang, Shuihua
N1 - Publisher Copyright:
© 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2020/6/1
Y1 - 2020/6/1
N2 - Conventional brain functional networks are constructed by extracting the entire time series from functional Magnetic Resonance Imaging (fMRI). Yet such a method is easy to ignore the dynamic interaction patterns of brain regions that essentially change across time. In this study, we analyze the functional connectivity characteristics of Rich Club in resting-state brain functional networks, and study the dynamic functional differences of core brain regions at different time periods. First, the time series is extracted from resting-state fMRI to construct a dynamic brain functional network. Then, Rich Clubs of different time periods are determined by the Rich Club coefficients. In particular, the efficiency of each Rich Club is calculated to examine the influences of the Rich Connections, Feeder Connections and Local Connections. Finally, the node degree, clustering coefficient and efficiency for Rich Club nodes are calculated to quantify the dynamic processes of Rich Clubs, and the functional connectivity of Rich Clubs are compared with those of the functional networks constructed by the entire fMRI time series. Experimental results demonstrate that the distribution of Rich Clubs in the dynamic brain functional network is consistent with that from the entire fMRI time series, while the composition and functional connectivity of Rich Club dynamically change across time. Moreover, Rich connection and Local connection in the brain functional networks show a significant correlation with the efficiency of Rich Club, and the local and the global efficiency of Rich Clubs are greater than that of the global network. These results further illustrate the viewpoint that Rich Clubs have significant influence on the functional characteristics of global brain functional networks.
AB - Conventional brain functional networks are constructed by extracting the entire time series from functional Magnetic Resonance Imaging (fMRI). Yet such a method is easy to ignore the dynamic interaction patterns of brain regions that essentially change across time. In this study, we analyze the functional connectivity characteristics of Rich Club in resting-state brain functional networks, and study the dynamic functional differences of core brain regions at different time periods. First, the time series is extracted from resting-state fMRI to construct a dynamic brain functional network. Then, Rich Clubs of different time periods are determined by the Rich Club coefficients. In particular, the efficiency of each Rich Club is calculated to examine the influences of the Rich Connections, Feeder Connections and Local Connections. Finally, the node degree, clustering coefficient and efficiency for Rich Club nodes are calculated to quantify the dynamic processes of Rich Clubs, and the functional connectivity of Rich Clubs are compared with those of the functional networks constructed by the entire fMRI time series. Experimental results demonstrate that the distribution of Rich Clubs in the dynamic brain functional network is consistent with that from the entire fMRI time series, while the composition and functional connectivity of Rich Club dynamically change across time. Moreover, Rich connection and Local connection in the brain functional networks show a significant correlation with the efficiency of Rich Club, and the local and the global efficiency of Rich Clubs are greater than that of the global network. These results further illustrate the viewpoint that Rich Clubs have significant influence on the functional characteristics of global brain functional networks.
KW - Brain functional networks
KW - Functional magnetic resonance imaging (fMRI)
KW - Rich club
KW - Time series
UR - http://www.scopus.com/inward/record.url?scp=85050665227&partnerID=8YFLogxK
U2 - 10.1007/s11042-018-6424-4
DO - 10.1007/s11042-018-6424-4
M3 - Article
AN - SCOPUS:85050665227
SN - 1380-7501
VL - 79
SP - 15075
EP - 15093
JO - Multimedia Tools and Applications
JF - Multimedia Tools and Applications
IS - 21-22
ER -