Responses of bacterial communities to simulated climate changes in alpine meadow soil of the Qinghai-Tibet plateau

Junpeng Rui, Jiabao Li, Shiping Wang, Jiaxing An, Wen tso Liu, Qiaoyan Lin, Yunfeng Yang, Zhili He, Xiangzhen Li*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

112 Citations (Scopus)

Abstract

The soil microbial community plays an important role in terrestrial carbon and nitrogen cycling. However, microbial responses to climate warming or cooling remain poorly understood, limiting our ability to predict the consequences of future climate changes. To address this issue, it is critical to identify microbes sensitive to climate change and key driving factors shifting microbial communities. In this study, alpine soil transplant experiments were conducted downward or upward along an elevation gradient between 3,200 and 3,800min the Qinghai-Tibet plateau to simulate climate warming or cooling. After a 2-year soil transplant experiment, soil bacterial communities were analyzed by pyrosequencing of 16S rRNA gene amplicons. The results showed that the transplanted soil bacterial communities became more similar to those in their destination sites and more different from those in their "home" sites. Warming led to increases in the relative abundances in Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria and decreases in Acidobacteria, Betaproteobacteria, and Deltaproteobacteria, while cooling had opposite effects on bacterial communities (symmetric response). Soil temperature and plant biomass contributed significantly to shaping the bacterial community structure. Overall, climate warming or cooling shifted the soil bacterial community structure mainly through species sorting, and such a shift might correlate to important biogeochemical processes such as greenhouse gas emissions. This study provides new insights into our understanding of soil bacterial community responses to climate warming and cooling.

Original languageEnglish
Pages (from-to)6070-6077
Number of pages8
JournalApplied and Environmental Microbiology
Volume81
Issue number17
DOIs
Publication statusPublished - 2015
Externally publishedYes

Cite this