ReLAX: Reinforcement Learning Agent Explainer for Arbitrary Predictive Models

Ziheng Chen, Fabrizio Silvestri, Jia Wang, He Zhu, Hongshik Ahn, Gabriele Tolomei

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

17 Citations (Scopus)

Abstract

Counterfactual examples (CFs) are one of the most popular methods for attaching post-hoc explanations to machine learning (ML) models. However, existing CF generation methods either exploit the internals of specific models or depend on each sample's neighborhood, thus they are hard to generalize for complex models and inefficient for large datasets. This work aims to overcome these limitations and introduces ReLAX, a model-agnostic algorithm to generate optimal counterfactual explanations. Specifically, we formulate the problem of crafting CFs as a sequential decision-making task and then find the optimal CFs via deep reinforcement learning (DRL) with discrete-continuous hybrid action space. Extensive experiments conducted on several tabular datasets have shown that ReLAX outperforms existing CF generation baselines, as it produces sparser counterfactuals, is more scalable to complex target models to explain, and generalizes to both classification and regression tasks. Finally, to demonstrate the usefulness of our method in a real-world use case, we leverage CFs generated by ReLAX to suggest actions that a country should take to reduce the risk of mortality due to COVID-19. Interestingly enough, the actions recommended by our method correspond to the strategies that many countries have actually implemented to counter the COVID-19 pandemic.

Original languageEnglish
Title of host publicationCIKM 2022 - Proceedings of the 31st ACM International Conference on Information and Knowledge Management
PublisherAssociation for Computing Machinery
Pages252-261
Number of pages10
ISBN (Electronic)9781450392365
DOIs
Publication statusPublished - 17 Oct 2022
Event31st ACM International Conference on Information and Knowledge Management, CIKM 2022 - Atlanta, United States
Duration: 17 Oct 202221 Oct 2022

Publication series

NameInternational Conference on Information and Knowledge Management, Proceedings

Conference

Conference31st ACM International Conference on Information and Knowledge Management, CIKM 2022
Country/TerritoryUnited States
CityAtlanta
Period17/10/2221/10/22

Keywords

  • counterfactual explanations
  • deep reinforcement learning
  • explainable ai
  • machine learning explainability

Fingerprint

Dive into the research topics of 'ReLAX: Reinforcement Learning Agent Explainer for Arbitrary Predictive Models'. Together they form a unique fingerprint.

Cite this