TY - JOUR
T1 - Recycling municipal, agricultural and industrial waste into energy, fertilizers, food and construction materials, and economic feasibility
T2 - a review
AU - Peng, Xiaoxuan
AU - Jiang, Yushan
AU - Chen, Zhonghao
AU - Osman, Ahmed I.
AU - Farghali, Mohamed
AU - Rooney, David W.
AU - Yap, Pow Seng
N1 - Funding Information:
Dr. Ahmed I. Osman and Prof. David W. Rooney wish to acknowledge the support of The Bryden Centre project (Project ID VA5048), which was awarded by The European Union’s INTERREG VA Programme, managed by the Special EU Programmes Body (SEUPB), with match funding provided by the Department for the Economy in Northern Ireland and the Department of Business, Enterprise and Innovation in the Republic of Ireland.
Publisher Copyright:
© 2023, The Author(s).
PY - 2023
Y1 - 2023
N2 - The global amount of solid waste has dramatically increased as a result of rapid population growth, accelerated urbanization, agricultural demand, and industrial development. The world's population is expected to reach 8.5 billion by 2030, while solid waste production will reach 2.59 billion tons. This will deteriorate the already strained environment and climate situation. Consequently, there is an urgent need for methods to recycle solid waste. Here, we review recent technologies to treat solid waste, and we assess the economic feasibility of transforming waste into energy. We focus on municipal, agricultural, and industrial waste. We found that methane captured from landfilled-municipal solid waste in Delhi could supply 8–18 million houses with electricity and generate 7140 gigawatt-hour, with a prospected potential of 31,346 and 77,748 gigawatt-hour by 2030 and 2060, respectively. Valorization of agricultural solid waste and food waste by anaerobic digestion systems could replace 61.46% of natural gas and 38.54% of coal use in the United Kingdom, and could reduce land use of 1.8 million hectares if provided as animal feeds. We also estimated a levelized cost of landfill solid and anaerobic digestion waste-to-energy technologies of $0.04/kilowatt-hour and $0.07/kilowatt-hour, with a payback time of 0.73–1.86 years and 1.17–2.37 years, respectively. Nonetheless, current landfill waste treatment methods are still inefficient, in particular for treating food waste containing over 60% water.
AB - The global amount of solid waste has dramatically increased as a result of rapid population growth, accelerated urbanization, agricultural demand, and industrial development. The world's population is expected to reach 8.5 billion by 2030, while solid waste production will reach 2.59 billion tons. This will deteriorate the already strained environment and climate situation. Consequently, there is an urgent need for methods to recycle solid waste. Here, we review recent technologies to treat solid waste, and we assess the economic feasibility of transforming waste into energy. We focus on municipal, agricultural, and industrial waste. We found that methane captured from landfilled-municipal solid waste in Delhi could supply 8–18 million houses with electricity and generate 7140 gigawatt-hour, with a prospected potential of 31,346 and 77,748 gigawatt-hour by 2030 and 2060, respectively. Valorization of agricultural solid waste and food waste by anaerobic digestion systems could replace 61.46% of natural gas and 38.54% of coal use in the United Kingdom, and could reduce land use of 1.8 million hectares if provided as animal feeds. We also estimated a levelized cost of landfill solid and anaerobic digestion waste-to-energy technologies of $0.04/kilowatt-hour and $0.07/kilowatt-hour, with a payback time of 0.73–1.86 years and 1.17–2.37 years, respectively. Nonetheless, current landfill waste treatment methods are still inefficient, in particular for treating food waste containing over 60% water.
KW - Economic feasibility
KW - Solid waste
KW - Sustainable development
KW - Value added
KW - Waste to energy
UR - http://www.scopus.com/inward/record.url?scp=85145691696&partnerID=8YFLogxK
U2 - 10.1007/s10311-022-01551-5
DO - 10.1007/s10311-022-01551-5
M3 - Review article
AN - SCOPUS:85145691696
SN - 1610-3653
VL - 21
SP - 765
EP - 801
JO - Environmental Chemistry Letters
JF - Environmental Chemistry Letters
IS - 2
ER -