TY - GEN
T1 - PTN
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
AU - Huang, Huaxi
AU - Zhang, Junjie
AU - Zhang, Jian
AU - Wu, Qiang
AU - Xu, Chang
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
PY - 2021
Y1 - 2021
N2 - The predicament in semi-supervised few-shot learning (SSFSL) is to maximize the value of the extra unlabeled data to boost the few-shot learner. In this paper, we propose a Poisson Transfer Network (PTN) to mine the unlabeled information for SSFSL from two aspects. First, the Poisson Merriman-Bence-Osher (MBO) model builds a bridge for the communications between labeled and unlabeled examples. This model serves as a more stable and informative classifier than traditional graph-based SSFSL methods in the message-passing process of the labels. Second, the extra unlabeled samples are employed to transfer the knowledge from base classes to novel classes through contrastive learning. Specifically, we force the augmented positive pairs close while push the negative ones distant. Our contrastive transfer scheme implicitly learns the novel-class embeddings to alleviate the over-fitting problem on the few labeled data. Thus, we can mitigate the degeneration of embedding generality in novel classes. Extensive experiments indicate that PTN outperforms the state-of-the-art few-shot and SSFSL models on miniImageNet and tieredImageNet benchmark datasets.
AB - The predicament in semi-supervised few-shot learning (SSFSL) is to maximize the value of the extra unlabeled data to boost the few-shot learner. In this paper, we propose a Poisson Transfer Network (PTN) to mine the unlabeled information for SSFSL from two aspects. First, the Poisson Merriman-Bence-Osher (MBO) model builds a bridge for the communications between labeled and unlabeled examples. This model serves as a more stable and informative classifier than traditional graph-based SSFSL methods in the message-passing process of the labels. Second, the extra unlabeled samples are employed to transfer the knowledge from base classes to novel classes through contrastive learning. Specifically, we force the augmented positive pairs close while push the negative ones distant. Our contrastive transfer scheme implicitly learns the novel-class embeddings to alleviate the over-fitting problem on the few labeled data. Thus, we can mitigate the degeneration of embedding generality in novel classes. Extensive experiments indicate that PTN outperforms the state-of-the-art few-shot and SSFSL models on miniImageNet and tieredImageNet benchmark datasets.
UR - http://www.scopus.com/inward/record.url?scp=85108398067&partnerID=8YFLogxK
M3 - Conference Proceeding
AN - SCOPUS:85108398067
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 1602
EP - 1609
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
Y2 - 2 February 2021 through 9 February 2021
ER -