PivotFEC: Enhancing Few-shot Factual Error Correction with a Pivot Task Approach using Large Language Models

Xingwei He, A. Long Jin, Jun Ma, Yuan Yuan*, Siu Ming Yiu*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

1 Citation (Scopus)

Abstract

Factual Error Correction (FEC) aims to rectify false claims by making minimal revisions to align them more accurately with supporting evidence. However, the lack of datasets containing false claims and their corresponding corrections has impeded progress in this field. Existing distantly supervised models typically employ the mask-then-correct paradigm, where a masker identifies problematic spans in false claims, followed by a corrector to predict the masked portions. Unfortunately, accurately identifying errors in claims is challenging, leading to issues like over-erasure and incorrect masking. To overcome these challenges, we present PivotFEC, a method that enhances few-shot FEC with a pivot task approach using large language models (LLMs). Specifically, we introduce a pivot task called factual error injection, which leverages LLMs (e.g., ChatGPT) to intentionally generate text containing factual errors under few-shot settings; then, the generated text with factual errors can be used to train the FEC corrector. Our experiments on a public dataset demonstrate the effectiveness of PivotFEC in two significant ways: Firstly, it improves the widely-adopted SARI metrics by 11.3 compared to the best-performing distantly supervised methods. Secondly, it outperforms its few-shot counterpart (i.e., LLMs are directly used to solve FEC) by 7.9 points in SARI, validating the efficacy of our proposed pivot task.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationEMNLP 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages9960-9976
Number of pages17
ISBN (Electronic)9798891760615
Publication statusPublished - 2023
Externally publishedYes
Event2023 Findings of the Association for Computational Linguistics: EMNLP 2023 - Singapore, Singapore
Duration: 6 Dec 202310 Dec 2023

Publication series

NameFindings of the Association for Computational Linguistics: EMNLP 2023

Conference

Conference2023 Findings of the Association for Computational Linguistics: EMNLP 2023
Country/TerritorySingapore
CitySingapore
Period6/12/2310/12/23

Fingerprint

Dive into the research topics of 'PivotFEC: Enhancing Few-shot Factual Error Correction with a Pivot Task Approach using Large Language Models'. Together they form a unique fingerprint.

Cite this