TY - JOUR
T1 - Optical validation and characterization of Planck PSZ1 sources at the Canary Islands observatories
T2 - I. First year of ITP13 observations
AU - Barrena, R.
AU - Streblyanska, A.
AU - Ferragamo, A.
AU - Rubiño-Martín, J. A.
AU - Aguado-Barahona, A.
AU - Tramonte, D.
AU - Génova-Santos, R. T.
AU - Hempel, A.
AU - Lietzen, H.
AU - Aghanim, N.
AU - Arnaud, M.
AU - Böhringer, H.
AU - Chon, G.
AU - Democles, J.
AU - Dahle, H.
AU - Douspis, M.
AU - Lasenby, A. N.
AU - Mazzotta, P.
AU - Melin, J. B.
AU - Pointecouteau, E.
AU - Pratt, G. W.
AU - Rossetti, M.
AU - Van Der Burg, R. F.J.
N1 - Publisher Copyright:
© ESO 2018.
PY - 2018/8/1
Y1 - 2018/8/1
N2 - We have identified new clusters and characterized previously unknown Planck Sunyaev-Zeldovich (SZ) sources from the first Planck catalogue of SZ sources (PSZ1). The results presented here correspond to an optical follow-up observational programme developed during approximately one year (2014) at Roque de los Muchachos Observatory, using the 2.5 m Isaac Newton telescope, the 3.5 m Telescopio Nazionale Galileo, the 4.2 m William Herschel telescope and the 10.4 m Gran Telescopio Canarias. We have characterized 115 new PSZ1 sources using deep optical imaging and spectroscopy. We adopted robust criteria in order to consolidate the SZ counterparts by analysing the optical richness, the 2D galaxy distribution, and velocity dispersions of clusters. Confirmed counterparts are considered to be validated if they are rich structures, well aligned with the Planck PSZ1 coordinate and show relatively high velocity dispersion. Following this classification, we confirm 53 clusters, which means that 46% of this PSZ1 subsample has been validated and characterized with this technique. Sixty-Two SZ sources (54% of this PSZ1 subset) remain unconfirmed. In addition, we find that the fraction of unconfirmed clusters close to the galactic plane (at |b| < 25°) is greater than that at higher galactic latitudes (|b| > 25°), which indicates contamination produced by radio emission of galactic dust and gas clouds on these SZ detections. In fact, in the majority of the cases, we detect important galactic cirrus in the optical images, mainly in the SZ target located at low galactic latitudes, which supports this hypothesis.
AB - We have identified new clusters and characterized previously unknown Planck Sunyaev-Zeldovich (SZ) sources from the first Planck catalogue of SZ sources (PSZ1). The results presented here correspond to an optical follow-up observational programme developed during approximately one year (2014) at Roque de los Muchachos Observatory, using the 2.5 m Isaac Newton telescope, the 3.5 m Telescopio Nazionale Galileo, the 4.2 m William Herschel telescope and the 10.4 m Gran Telescopio Canarias. We have characterized 115 new PSZ1 sources using deep optical imaging and spectroscopy. We adopted robust criteria in order to consolidate the SZ counterparts by analysing the optical richness, the 2D galaxy distribution, and velocity dispersions of clusters. Confirmed counterparts are considered to be validated if they are rich structures, well aligned with the Planck PSZ1 coordinate and show relatively high velocity dispersion. Following this classification, we confirm 53 clusters, which means that 46% of this PSZ1 subsample has been validated and characterized with this technique. Sixty-Two SZ sources (54% of this PSZ1 subset) remain unconfirmed. In addition, we find that the fraction of unconfirmed clusters close to the galactic plane (at |b| < 25°) is greater than that at higher galactic latitudes (|b| > 25°), which indicates contamination produced by radio emission of galactic dust and gas clouds on these SZ detections. In fact, in the majority of the cases, we detect important galactic cirrus in the optical images, mainly in the SZ target located at low galactic latitudes, which supports this hypothesis.
KW - Catalogs
KW - Galaxies: clusters: general
KW - Large-scale structure of Universe
UR - http://www.scopus.com/inward/record.url?scp=85052871332&partnerID=8YFLogxK
U2 - 10.1051/0004-6361/201732315
DO - 10.1051/0004-6361/201732315
M3 - Article
AN - SCOPUS:85052871332
SN - 0004-6361
VL - 616
JO - Astronomy and Astrophysics
JF - Astronomy and Astrophysics
M1 - A42
ER -