TY - JOUR
T1 - Molecular domino reactor built by automated modular synthesis for cancer treatment
AU - Yang, Yu
AU - He, Jiaxuan
AU - Zhu, Wenjun
AU - Pan, Xiaoshu
AU - Yazd, Hoda Safari
AU - Cui, Cheng
AU - Yang, Lu
AU - Li, Xiaowei
AU - Li, Long
AU - Cheng, Liang
AU - Feng, Liangzhu
AU - Wang, Ruowen
AU - Liu, Zhuang
AU - Chen, Meiwan
AU - Tan, Weihong
N1 - Publisher Copyright:
© The author(s).
PY - 2020
Y1 - 2020
N2 - Rationale: A cascade, or domino, reaction consists of two, or more, consecutive reactions such that subsequent reactions occur only if some chemical functionality has first been established in the prior step. However, while construction of predesigned and desired molecular domino reactors in a tailored manner is a valuable endeavor, it is still challenging. Methods: To address this challenge, we herein report an aptamer-based photodynamic domino reactor built through automated modular synthesis. The engineering of this reactor takes advantage of the well-established solid-phase synthesis platform to incorporate a photosensitizer into G-quadruplex/ hemin DNAzyme at the molecular level. Results: As a proof of concept, our photodynamic domino reactor, termed AS1411/heminpyrochlorophyll A, achieves in vivo photodynamic domino reaction for efficient cancer treatment by using a high concentration of hydrogen peroxide (H2O2) in the tumor microenvironment (TME) to produce O2, followed by consecutive generation of singlet oxygen (1O2) using the pre-produced O2. More specifically, phosphoramidite PA (pyrochlorophyll A) is coupled to aptamer AS1411 to form AS1411-PA ApDC able to simultaneously perform in vivo targeted imaging and photodynamic therapy (PDT). The insertion of hemin into the AS1411 G-quadruplex was demonstrated to alleviate tumor hypoxia by decomposition of H2O2 to produce O2. This was followed by the generation of 1O2 by PA to trigger cascading amplified PDT. Conclusion: Therefore, this study provides a general strategy for building an aptamer-based molecular domino reactor through automated modular synthesis. By proof of concept, we further demonstrate a novel method of achieving enhanced PDT, as well as alleviating TME hypoxia at the molecular level.
AB - Rationale: A cascade, or domino, reaction consists of two, or more, consecutive reactions such that subsequent reactions occur only if some chemical functionality has first been established in the prior step. However, while construction of predesigned and desired molecular domino reactors in a tailored manner is a valuable endeavor, it is still challenging. Methods: To address this challenge, we herein report an aptamer-based photodynamic domino reactor built through automated modular synthesis. The engineering of this reactor takes advantage of the well-established solid-phase synthesis platform to incorporate a photosensitizer into G-quadruplex/ hemin DNAzyme at the molecular level. Results: As a proof of concept, our photodynamic domino reactor, termed AS1411/heminpyrochlorophyll A, achieves in vivo photodynamic domino reaction for efficient cancer treatment by using a high concentration of hydrogen peroxide (H2O2) in the tumor microenvironment (TME) to produce O2, followed by consecutive generation of singlet oxygen (1O2) using the pre-produced O2. More specifically, phosphoramidite PA (pyrochlorophyll A) is coupled to aptamer AS1411 to form AS1411-PA ApDC able to simultaneously perform in vivo targeted imaging and photodynamic therapy (PDT). The insertion of hemin into the AS1411 G-quadruplex was demonstrated to alleviate tumor hypoxia by decomposition of H2O2 to produce O2. This was followed by the generation of 1O2 by PA to trigger cascading amplified PDT. Conclusion: Therefore, this study provides a general strategy for building an aptamer-based molecular domino reactor through automated modular synthesis. By proof of concept, we further demonstrate a novel method of achieving enhanced PDT, as well as alleviating TME hypoxia at the molecular level.
KW - Automated modular synthesis
KW - Molecular domino reactor
KW - Molecular “elements”
KW - Photodynamic therapy
KW - Tumor microenvironment (TME)
UR - http://www.scopus.com/inward/record.url?scp=85081263488&partnerID=8YFLogxK
U2 - 10.7150/thno.43581
DO - 10.7150/thno.43581
M3 - Article
C2 - 32226537
AN - SCOPUS:85081263488
SN - 1838-7640
VL - 10
SP - 4030
EP - 4041
JO - Theranostics
JF - Theranostics
IS - 9
ER -