Abstract
This brief presents a Lyapunov theory-based weight adaptation scheme for a multilayered neural network (MLNN) mainly used to classify a multiple-input-multiple-output (MIMO) problem. Initially, the MLNN system is linearized using Taylor series expansion. Then, the weight adaptation scheme is designed based on the Lyapunov stability theory to iteratively update the weight. In the design, the Lyapunov function has to be well selected to construct an energy space with a single global minimum. Hence, the Lyapunov theory-based MLNN acts as a MIMO classifier for face recognition. Analysis and discussion on Lyapunov properties of the proposed classifier are included. The performance of the proposed technique is tested on the Olivetti Research Laboratory database for face classification, and some comparisons with existing conventional techniques are given. Simulation results have revealed that our proposed system achieved better performance.
Original language | English |
---|---|
Pages (from-to) | 305-309 |
Number of pages | 5 |
Journal | IEEE Transactions on Circuits and Systems II: Express Briefs |
Volume | 56 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2009 |
Externally published | Yes |
Keywords
- Face recognition
- Lyapunov stability theory
- Multilayered neural network (MLNN)
- Neural networks (NNs)