TY - JOUR
T1 - Large scale analysis of the mutational landscape in β-glucuronidase
T2 - A major player of mucopolysaccharidosis type VII
AU - Khan, Faez Iqbal
AU - Shahbaaz, Mohd
AU - Bisetty, Krishna
AU - Waheed, Abdul
AU - Sly, William S.
AU - Ahmad, Faizan
AU - Hassan, Md Imtaiyaz
N1 - Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2016/1/15
Y1 - 2016/1/15
N2 - The lysosomal storage disorders are a group of 50 unique inherited diseases characterized by unseemly lipid storage in lysosomes. These malfunctions arise due to genetic mutations that result in deficiency or reduced activities of the lysosomal enzymes, which are responsible for catabolism of biological macromolecules. Sly syndrome or mucopolysaccharidosis type VII is a lysosomal storage disorder associated with the deficiency of β-glucuronidase (EC 3.2.1.31) that catalyzes the hydrolysis of β-. d-glucuronic acid residues from the non-reducing terminal of glycosaminoglycan. The effects of the disease causing mutations on the framework of the sequences and structure of β-glucuronidase (GUSBp) were analyzed utilizing a variety of bioinformatic tools. These analyses showed that 211 mutations may result in alteration of the biological activity of GUSBp, including previously experimentally validated mutations. Finally, we refined 90 disease causing mutations, which presumably cause a significant impact on the structure, function, and stability of GUSBp. Stability analyses showed that mutations p.Phe208Pro, p.Phe539Gly, p.Leu622Gly, p.Ile499Gly and p.Ile586Gly caused the highest impact on GUSBp stability and function because of destabilization of the protein structure. Furthermore, structures of wild type and mutant GUSBp were subjected to molecular dynamics simulation to examine the relative structural behaviors in the explicit conditions of water. In a broader view, the use of in silico approaches provided a useful understanding of the effect of single point mutations on the structure-function relationship of GUSBp.
AB - The lysosomal storage disorders are a group of 50 unique inherited diseases characterized by unseemly lipid storage in lysosomes. These malfunctions arise due to genetic mutations that result in deficiency or reduced activities of the lysosomal enzymes, which are responsible for catabolism of biological macromolecules. Sly syndrome or mucopolysaccharidosis type VII is a lysosomal storage disorder associated with the deficiency of β-glucuronidase (EC 3.2.1.31) that catalyzes the hydrolysis of β-. d-glucuronic acid residues from the non-reducing terminal of glycosaminoglycan. The effects of the disease causing mutations on the framework of the sequences and structure of β-glucuronidase (GUSBp) were analyzed utilizing a variety of bioinformatic tools. These analyses showed that 211 mutations may result in alteration of the biological activity of GUSBp, including previously experimentally validated mutations. Finally, we refined 90 disease causing mutations, which presumably cause a significant impact on the structure, function, and stability of GUSBp. Stability analyses showed that mutations p.Phe208Pro, p.Phe539Gly, p.Leu622Gly, p.Ile499Gly and p.Ile586Gly caused the highest impact on GUSBp stability and function because of destabilization of the protein structure. Furthermore, structures of wild type and mutant GUSBp were subjected to molecular dynamics simulation to examine the relative structural behaviors in the explicit conditions of water. In a broader view, the use of in silico approaches provided a useful understanding of the effect of single point mutations on the structure-function relationship of GUSBp.
KW - Enzyme deficiency
KW - Lysosomal storage diseases
KW - MD simulation
KW - Mucopolysaccharidosis type VII
KW - Mutation analysis
KW - Sly syndrome
KW - β-glucuronidase
UR - http://www.scopus.com/inward/record.url?scp=84948808733&partnerID=8YFLogxK
U2 - 10.1016/j.gene.2015.09.062
DO - 10.1016/j.gene.2015.09.062
M3 - Article
C2 - 26415878
AN - SCOPUS:84948808733
SN - 0378-1119
VL - 576
SP - 36
EP - 44
JO - Gene
JF - Gene
IS - 1
ER -