Joint Optimization of Video-Based AI Inference Tasks in MEC-Assisted Augmented Reality Systems

Guangjin Pan, Heng Zhang, Shugong Xu*, Shunqing Zhang, Xiaojing Chen

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

The high computational complexity and energy consumption of artificial intelligence (AI) algorithms hinder their application in augmented reality (AR) systems. However, mobile edge computing (MEC) makes it possible to solve this problem. This paper considers the scene of completing video-based AI inference tasks in the MEC system. We formulate a mixed-integer nonlinear programming problem (MINLP) to reduce inference delays, energy consumption and to improve recognition accuracy. We give a simplified expression of the inference complexity model and accuracy model through derivation and experimentation. The problem is then solved iteratively by using alternating optimization. Specifically, by assuming that the offloading decision is given, the problem is decoupled into two sub-problems, i.e., the resource allocation problem for the devices set that completes the inference tasks locally, and that for the devices set that offloads tasks. For the problem of offloading decision optimization, we propose a Channel-Aware heuristic algorithm. To further reduce the complexity, we propose an alternating direction method of multipliers (ADMM) based distributed algorithm. The ADMM-based algorithm has a low computational complexity that grows linearly with the number of devices. Numerical experiments show the effectiveness of proposed algorithms. The trade-off relationship between delay, energy consumption, and accuracy is also analyzed.

Original languageEnglish
Pages (from-to)479-493
Number of pages15
JournalIEEE Transactions on Cognitive Communications and Networking
Volume9
Issue number2
DOIs
Publication statusPublished - 1 Apr 2023
Externally publishedYes

Keywords

  • edge intelligence
  • Mobile augmented reality
  • mobile edge computing
  • resource allocation

Fingerprint

Dive into the research topics of 'Joint Optimization of Video-Based AI Inference Tasks in MEC-Assisted Augmented Reality Systems'. Together they form a unique fingerprint.

Cite this