Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems

Ibrahim M. Mehedi*, Hussain Bassi, Muhyaddin J. Rawa, Mohammed Ajour, Abdullah Abusorrah, Mahendiran T. Vellingiri, Zainal Salam, Md Pauzi Bin Abdullah

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Electricity demand forecasting remains a challenging issue for power system scheduling at varying stages of energy sectors. Short Term load forecasting (STLF) plays a vital part in regulated power systems and electricity markets, which is commonly employed to predict the outcomes power failures. This paper presents an intelligent machine learning with evolutionary algorithm based STLF model, called (IMLEA-STLF) for power systems which involves different stages of operations such as data decomposition, data preprocessing, feature selection, prediction, and parameter tuning. Wavelet transform (WT) is used for the decomposition of the time series and Oppositional Artificial Fish Swarm Optimization algorithm (OAFSA) based feature selection technique to elect an optimal set of features. In order to improvise the convergence rate of AFSA, oppositional based learning (OBL) concept is integrated into it. Then, the water wave optimization (WWO) with Elman neural networks (ENN) model is employed for the predictive process. Finally, inverse WT is applied and obtained the hourly load forecasting data. To validate the effective predictive outcome of the IMLEA-STLF model, an extensive set of simulations take place on benchmark dataset. The resultant values ensured the promising results of the IMLEA-STLF model over the other compared methods.

Original languageEnglish
Article number9481927
Pages (from-to)100113-100124
Number of pages12
JournalIEEE Access
Volume9
DOIs
Publication statusPublished - 2021
Externally publishedYes

Keywords

  • Artificial intelligent
  • Evolutionary algorithms
  • Machine learning
  • Power systems
  • Short term load forecasting
  • Signal decomposition

Fingerprint

Dive into the research topics of 'Intelligent machine learning with evolutionary algorithm based short term load forecasting in power systems'. Together they form a unique fingerprint.

Cite this