TY - JOUR
T1 - Hyperspectral Image Denoising via Adversarial Learning
AU - Zhang, Junjie
AU - Cai, Zhouyin
AU - Chen, Fansheng
AU - Zeng, Dan
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Due to sensor instability and atmospheric interference, hyperspectral images (HSIs) often suffer from different kinds of noise which degrade the performance of downstream tasks. Therefore, HSI denoising has become an essential part of HSI preprocessing. Traditional methods tend to tackle one specific type of noise and remove it iteratively, resulting in drawbacks including inefficiency when dealing with mixed noise. Most recently, deep neural network-based models, especially generative adversarial networks, have demonstrated promising performance in generic image denoising. However, in contrast to generic RGB images, HSIs often possess abundant spectral information; thus, it is non-trivial to design a denoising network to effectively explore both spatial and spectral characteristics simultaneously. To address the above issues, in this paper, we propose an end-to-end HSI denoising model via adversarial learning. More specifically, to capture the subtle noise distribution from both spatial and spectral dimensions, we designed a Residual Spatial-Spectral Module (RSSM) and embed it in an UNet-like structure as the generator to obtain clean images. To distinguish the real image from the generated one, we designed a discriminator based on the Multiscale Feature Fusion Module (MFFM) to further improve the quality of the denoising results. The generator was trained with joint loss functions, including reconstruction loss, structural loss and adversarial loss. Moreover, considering the lack of publicly available training data for the HSI denoising task, we collected an additional benchmark dataset denoted as the Shandong Feicheng Denoising (SFD) dataset. We evaluated five types of mixed noise across several datasets in comparative experiments, and comprehensive experimental results on both simulated and real data demonstrate that the proposed model achieves competitive results against state-of-the-art methods. For ablation studies, we investigated the structure of the generator as well as the training process with joint losses and different amounts of training data, further validating the rationality and effectiveness of the proposed method.
AB - Due to sensor instability and atmospheric interference, hyperspectral images (HSIs) often suffer from different kinds of noise which degrade the performance of downstream tasks. Therefore, HSI denoising has become an essential part of HSI preprocessing. Traditional methods tend to tackle one specific type of noise and remove it iteratively, resulting in drawbacks including inefficiency when dealing with mixed noise. Most recently, deep neural network-based models, especially generative adversarial networks, have demonstrated promising performance in generic image denoising. However, in contrast to generic RGB images, HSIs often possess abundant spectral information; thus, it is non-trivial to design a denoising network to effectively explore both spatial and spectral characteristics simultaneously. To address the above issues, in this paper, we propose an end-to-end HSI denoising model via adversarial learning. More specifically, to capture the subtle noise distribution from both spatial and spectral dimensions, we designed a Residual Spatial-Spectral Module (RSSM) and embed it in an UNet-like structure as the generator to obtain clean images. To distinguish the real image from the generated one, we designed a discriminator based on the Multiscale Feature Fusion Module (MFFM) to further improve the quality of the denoising results. The generator was trained with joint loss functions, including reconstruction loss, structural loss and adversarial loss. Moreover, considering the lack of publicly available training data for the HSI denoising task, we collected an additional benchmark dataset denoted as the Shandong Feicheng Denoising (SFD) dataset. We evaluated five types of mixed noise across several datasets in comparative experiments, and comprehensive experimental results on both simulated and real data demonstrate that the proposed model achieves competitive results against state-of-the-art methods. For ablation studies, we investigated the structure of the generator as well as the training process with joint losses and different amounts of training data, further validating the rationality and effectiveness of the proposed method.
KW - adversarial learning mechanism
KW - hyperspectral images
KW - image denoising
KW - residual learning
UR - http://www.scopus.com/inward/record.url?scp=85128737391&partnerID=8YFLogxK
U2 - 10.3390/rs14081790
DO - 10.3390/rs14081790
M3 - Article
AN - SCOPUS:85128737391
SN - 2072-4292
VL - 14
JO - Remote Sensing
JF - Remote Sensing
IS - 8
M1 - 1790
ER -