TY - JOUR
T1 - How much of the total organic halogen and developmental toxicity of chlorinated drinking water might be attributed to aromatic halogenated DBPs?
AU - Han, Jiarui
AU - Zhang, Xiangru
AU - Jiang, Jingyi
AU - Li, Wanxin
PY - 2021/4
Y1 - 2021/4
N2 - Although >700 disinfection byproducts (DBPs) have been identified, >50% of the total organic halogen (TOX) in drinking water chlorination is unknown, and the DBPs responsible for the chlorination-associated health risks remain largely unclear. Recent studies have revealed numerous aromatic halo-DBPs, which generally present substantially higher developmental toxicity than aliphatic halo-DBPs. This raises a fascinating and important question: how much of the TOX and developmental toxicity of chlorinated drinking water can be attributed to aromatic halo-DBPs? In this study, an effective approach with ultraperformance liquid chromatography was developed to separate the DBP mixture (from chlorination of bromide-rich raw water) into aliphatic and aromatic fractions, which were then characterized for their TOX and developmental toxicity. For chlorine contact times of 0.25–72 h, aromatic fractions accounted for 49–67% of the TOX in the obtained aliphatic and aromatic fractions, which were equivalent to 26–36% of the TOX in the original chlorinated water samples. Aromatic halo-DBP fractions were more developmentally toxic than the corresponding aliphatic fractions, and the overall developmental toxicity of chlorinated water samples was dominated by aromatic halo-DBP fractions. This might be explained by the considerably higher potentials of aromatic halo-DBPs to bioconcentrate and then generate reactive oxygen species in the organism.
AB - Although >700 disinfection byproducts (DBPs) have been identified, >50% of the total organic halogen (TOX) in drinking water chlorination is unknown, and the DBPs responsible for the chlorination-associated health risks remain largely unclear. Recent studies have revealed numerous aromatic halo-DBPs, which generally present substantially higher developmental toxicity than aliphatic halo-DBPs. This raises a fascinating and important question: how much of the TOX and developmental toxicity of chlorinated drinking water can be attributed to aromatic halo-DBPs? In this study, an effective approach with ultraperformance liquid chromatography was developed to separate the DBP mixture (from chlorination of bromide-rich raw water) into aliphatic and aromatic fractions, which were then characterized for their TOX and developmental toxicity. For chlorine contact times of 0.25–72 h, aromatic fractions accounted for 49–67% of the TOX in the obtained aliphatic and aromatic fractions, which were equivalent to 26–36% of the TOX in the original chlorinated water samples. Aromatic halo-DBP fractions were more developmentally toxic than the corresponding aliphatic fractions, and the overall developmental toxicity of chlorinated water samples was dominated by aromatic halo-DBP fractions. This might be explained by the considerably higher potentials of aromatic halo-DBPs to bioconcentrate and then generate reactive oxygen species in the organism.
M3 - Article
C2 - 33830743
SN - 0013-936X
JO - Environmental Science and Technology
JF - Environmental Science and Technology
ER -