Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection

Omar AlShorman, Mahmoud Masadeh*, Md Belal Bin Heyat*, Faijan Akhtar, Hossam Almahasneh, Ghulam Md Ashraf, Athanasios Alexiou*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

61 Citations (Scopus)

Abstract

Stress has become a dangerous health problem in our life, especially in student education journey. Accordingly, previous methods have been conducted to detect mental stress based on biological and biochemical effects. Moreover, hormones, physiological effects, and skin temperature have been extensively used for stress detection. However, based on the recent literature, biological, biochemical, and physiological-based methods have shown inconsistent findings, which are initiated due to hormones' instability. Therefore, it is crucial to study stress using different mechanisms such as Electroencephalogram (EEG) signals. In this research study, the frontal lobes EEG spectrum analysis is applied to detect mental stress. Initially, we apply a Fast Fourier Transform (FFT) as a feature extraction stage to measure all bands' power density for the frontal lobe. After that, we used two type of classifications such as subject wise and mix (mental stress vs. control) using Support Vector Machine (SVM) and Naive Bayes (NB) machine learning classifiers. Our obtained results of the average subject wise classification showed that the proposed technique has better accuracy (98.21%). Moreover, this technique has low complexity, high accuracy, simple and easy to use, no over fitting, and it could be used as a real-time and continuous monitoring technique for medical applications.

Original languageEnglish
Article number020
JournalJournal of Integrative Neuroscience
Volume21
Issue number1
DOIs
Publication statusPublished - 1 Jan 2022
Externally publishedYes

Keywords

  • Automatic detection
  • Brain
  • Electroencephalogram
  • Fast fourier transform
  • Frontallobe
  • Machinelearning
  • Stress
  • Universitystudents

Fingerprint

Dive into the research topics of 'Frontal lobe real-time EEG analysis using machine learning techniques for mental stress detection'. Together they form a unique fingerprint.

Cite this