FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction

Zheng Fang, Xiaoyang Wang, Haocheng Li, Jiejie Liu, Qiugui Hu, Jimin Xiao*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

4 Citations (Scopus)

Abstract

In industrial anomaly detection, data efficiency and the ability for fast migration across products become the main concerns when developing detection algorithms. Existing methods tend to be data-hungry and work in the one-model-one-category way, which hinders their effectiveness in real-world industrial scenarios. In this paper, we propose a few-shot anomaly detection strategy that works in a low-data regime and can generalize across products at no cost. Given a defective query sample, we propose to utilize a few normal samples as a reference to reconstruct its normal version, where the final anomaly detection can be achieved by sample alignment. Specifically, we introduce a novel regression with distribution regularization to obtain the optimal transformation from support to query features, which guarantees the reconstruction result shares visual similarity with the query sample and meanwhile maintains the property of normal samples. Experimental results show that our method significantly outperforms previous state-of-the-art at both image and pixel-level AUROC performances from 2 to 8-shot scenarios. Besides, with only a limited number of training samples (less than 8 samples), our method reaches competitive performance with vanilla AD methods which are trained with extensive normal samples. The code is available at https://github.com/FzJun26th/FastRecon.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages17435-17444
Number of pages10
ISBN (Electronic)9798350307184
DOIs
Publication statusPublished - 15 Jan 2024
Event2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023 - Paris, France
Duration: 2 Oct 20236 Oct 2023

Publication series

NameProceedings of the IEEE International Conference on Computer Vision
ISSN (Print)1550-5499

Conference

Conference2023 IEEE/CVF International Conference on Computer Vision, ICCV 2023
Country/TerritoryFrance
CityParis
Period2/10/236/10/23

Fingerprint

Dive into the research topics of 'FastRecon: Few-shot Industrial Anomaly Detection via Fast Feature Reconstruction'. Together they form a unique fingerprint.

Cite this