TY - JOUR
T1 - Exploring the Therapeutic Potential of Targeting Purinergic and Orexinergic Receptors in Alcoholic Neuropathy
AU - Madaan, Piyush
AU - Behl, Tapan
AU - Sehgal, Aayush
AU - Singh, Sukhbir
AU - Sharma, Neelam
AU - Yadav, Shivam
AU - Kaur, Satvinder
AU - Bhatia, Saurabh
AU - Al-Harrasi, Ahmed
AU - Abdellatif, Ahmed A.H.
AU - Ashraf, Ghulam Md
AU - Abdel-Daim, Mohamed M.
AU - Dailah, Hamad Ghaleb
AU - Anwer, Md Khalid
AU - Bungau, Simona
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2022/4
Y1 - 2022/4
N2 - Alcoholic neuropathy emerges following the persistent alcohol imbibing, and triggers nerve damage through de-escalating the receptors situated in the central nervous system (CNS), which consecutively evolves into debilitating neuropathic state and further precipitates hyperalgesia, allodynia, dysesthesia, ataxia, numbness, immobility, and decline in certain body functions. Existing pharmacotherapy, such as anticonvulsants (gabapentin and topiramate), and antidepressant drugs (duloxetine, and venlafaxine) render short-lasting benefits; however, their continual use is not favoured nowadays because of their detrimental outcomes and habit-forming behaviour. Consequently, the research is being shifted towards exploring novel propitious targets which entirely assist in the cessation of the disease. This review discloses the multitudinous pathways implicated in the pathogenesis of alcoholic neuropathy, with special emphasis on purinergic and orexinergic receptors. Moreover, the review focuses on targeting purinergic (P2X3, P2X2/3, P2X4, P2X7, and P2Y12), and orexinergic (OX1 and OX2) receptors associated with the evolution of alcoholic neuropathy, and to incentivize further investigation to attain novel propitious strategy in alcoholic neuropathy treatment. The mechanisms implicated in the progression of alcoholic neuropathy comprises malnourishment (B vitamins scarcity), direct pernicious outcomes of alcohol, increased oxidative-nitrosative stress, protein kinase C epsilon (PKCε), and extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) functioning, abnormalities in the axonal transport and cytoskeleton system, activation of nuclear factor-kappa B (NF-κB) and caspase pathway, stimulation of the sympathoadrenal and hypothalamo–pituitary–adrenal (HPA) axis, and microglial cells of spinal column. The purinergic receptor antagonists, orexins/orexinergic receptor antagonists eliminate/modulate hyperalgesia, allodynia, inflammatory pain, liberation of inflammatory mediators, NF-κB signalling pathway, ROS formation, nerve cell deterioration, and craving for alcohol consumption, thereby ceasing the evolution of alcoholic neuropathy. The authors focus to highlight the importance of this alternative strategy as a novel target in alcoholic neuropathy, and to incentivize researchers to scrutinize the possible benefits of purinergic and orexins/orexinergic receptors in the therapy of alcoholic neuropathy.
AB - Alcoholic neuropathy emerges following the persistent alcohol imbibing, and triggers nerve damage through de-escalating the receptors situated in the central nervous system (CNS), which consecutively evolves into debilitating neuropathic state and further precipitates hyperalgesia, allodynia, dysesthesia, ataxia, numbness, immobility, and decline in certain body functions. Existing pharmacotherapy, such as anticonvulsants (gabapentin and topiramate), and antidepressant drugs (duloxetine, and venlafaxine) render short-lasting benefits; however, their continual use is not favoured nowadays because of their detrimental outcomes and habit-forming behaviour. Consequently, the research is being shifted towards exploring novel propitious targets which entirely assist in the cessation of the disease. This review discloses the multitudinous pathways implicated in the pathogenesis of alcoholic neuropathy, with special emphasis on purinergic and orexinergic receptors. Moreover, the review focuses on targeting purinergic (P2X3, P2X2/3, P2X4, P2X7, and P2Y12), and orexinergic (OX1 and OX2) receptors associated with the evolution of alcoholic neuropathy, and to incentivize further investigation to attain novel propitious strategy in alcoholic neuropathy treatment. The mechanisms implicated in the progression of alcoholic neuropathy comprises malnourishment (B vitamins scarcity), direct pernicious outcomes of alcohol, increased oxidative-nitrosative stress, protein kinase C epsilon (PKCε), and extracellular signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) functioning, abnormalities in the axonal transport and cytoskeleton system, activation of nuclear factor-kappa B (NF-κB) and caspase pathway, stimulation of the sympathoadrenal and hypothalamo–pituitary–adrenal (HPA) axis, and microglial cells of spinal column. The purinergic receptor antagonists, orexins/orexinergic receptor antagonists eliminate/modulate hyperalgesia, allodynia, inflammatory pain, liberation of inflammatory mediators, NF-κB signalling pathway, ROS formation, nerve cell deterioration, and craving for alcohol consumption, thereby ceasing the evolution of alcoholic neuropathy. The authors focus to highlight the importance of this alternative strategy as a novel target in alcoholic neuropathy, and to incentivize researchers to scrutinize the possible benefits of purinergic and orexins/orexinergic receptors in the therapy of alcoholic neuropathy.
KW - Alcohol
KW - Alcoholic neuropathy
KW - Allodynia
KW - Hyperalgesia
KW - Orexinergic
KW - Purinergic
UR - http://www.scopus.com/inward/record.url?scp=85123640227&partnerID=8YFLogxK
U2 - 10.1007/s12640-022-00477-8
DO - 10.1007/s12640-022-00477-8
M3 - Review article
C2 - 35080764
AN - SCOPUS:85123640227
SN - 1029-8428
VL - 40
SP - 646
EP - 669
JO - Neurotoxicity Research
JF - Neurotoxicity Research
IS - 2
ER -