Evaluation of factors that predict the success rate of trial of labor after the cesarean section

Yang Mi, Pengfei Qu, Na Guo, Ruimiao Bai, Jiayi Gao, Zhengfeei Ma, Yiping He, Caili Wang, Xiaoqin Luo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Background: For most women who have had a previous cesarean section, vaginal birth after cesarean section (VBAC) is a reasonable and safe choice, but which will increase the risk of adverse outcomes such as uterine rupture. In order to reduce the risk, we evaluated the factors that may affect VBAC and and established a model for predicting the success rate of trial of the labor after cesarean section (TOLAC). Methods: All patients who gave birth at Northwest Women’s and Children’s Hospital from January 2016 to December 2018, had a history of cesarean section and voluntarily chose the TOLAC were recruited. Among them, 80% of the population was randomly assigned to the training set, while the remaining 20% were assigned to the external validation set. In the training set, univariate and multivariate logistic regression models were used to identify indicators related to successful TOLAC. A nomogram was constructed based on the results of multiple logistic regression analysis, and the selected variables included in the nomogram were used to predict the probability of successfully obtaining TOLAC. The area under the receiver operating characteristic curve was used to judge the predictive ability of the model. Results: A total of 778 pregnant women were included in this study. Among them, 595 (76.48%) successfully underwent TOLAC, whereas 183 (23.52%) failed and switched to cesarean section. In multi-factor logistic regression, parity = 1, pre-pregnancy BMI < 24 kg/m2, cervical score ≥ 5, a history of previous vaginal delivery and neonatal birthweight < 3300 g were associated with the success of TOLAC. The area under the receiver operating characteristic curve in the prediction and validation models was 0.815 (95% CI: 0.762–0.854) and 0.730 (95% CI: 0.652–0.808), respectively, indicating that the nomogram prediction model had medium discriminative power. Conclusion: The TOLAC was useful to reducing the cesarean section rate. Being primiparous, not overweight or obese, having a cervical score ≥ 5, a history of previous vaginal delivery or neonatal birthweight < 3300 g were protective indicators. In this study, the validated model had an approving predictive ability.

Original languageEnglish
Article number527
JournalBMC Pregnancy and Childbirth
Volume21
Issue number1
DOIs
Publication statusPublished - Dec 2021

Keywords

  • Intrapartum management
  • Prediction model
  • Trial of the labor after cesarean section
  • Vaginal birth after cesarean section

Cite this