TY - JOUR
T1 - Energy-efficient virtual content distribution network provisioning in cloud-based data centers
AU - Liao, Dan
AU - Sun, Gang
AU - Yang, Guanghua
AU - Chang, Victor
N1 - Publisher Copyright:
© 2018 Elsevier B.V.
PY - 2018/6
Y1 - 2018/6
N2 - Cloud-based content distribution networks (CDNs) consist of multiple servers that consume large amounts of energy. However, with the development of a cloud-based software defined network (SDN), a new paradigm of the virtual content distribution network (vCDN) has emerged. In an emerging cloud-based vCDN environment, the development and adjustment of vCDN components has become easier with the aid of SDN technology. This transformation provides the opportunity to use vCDNs to reduce energy consumption by adjusting the scale of the vCDN components. Energy costs can be reduced by deactivating the commercial servers carrying the software components of the vCDN, such as replica servers, the firewall or routers. In addition, the CDN requires a high service level agreement (SLA) to respond to clients’ requests, potentially consuming large amounts of energy. In this research, we focus on the issue of the energy savings of a CDN in a cloud computing environment while maintaining a high quality of service (QoS). We propose an approximate algorithm termed max flow forecast (MFF) to determine the number of software components in the vCDN. Additionally, we use a real traffic trace from a website to assess our algorithm. The experimental results show that MFF can produce a larger energy reduction than the existing algorithms for an identical SLA. We fully justify our research as a good example for the emerging cloud.
AB - Cloud-based content distribution networks (CDNs) consist of multiple servers that consume large amounts of energy. However, with the development of a cloud-based software defined network (SDN), a new paradigm of the virtual content distribution network (vCDN) has emerged. In an emerging cloud-based vCDN environment, the development and adjustment of vCDN components has become easier with the aid of SDN technology. This transformation provides the opportunity to use vCDNs to reduce energy consumption by adjusting the scale of the vCDN components. Energy costs can be reduced by deactivating the commercial servers carrying the software components of the vCDN, such as replica servers, the firewall or routers. In addition, the CDN requires a high service level agreement (SLA) to respond to clients’ requests, potentially consuming large amounts of energy. In this research, we focus on the issue of the energy savings of a CDN in a cloud computing environment while maintaining a high quality of service (QoS). We propose an approximate algorithm termed max flow forecast (MFF) to determine the number of software components in the vCDN. Additionally, we use a real traffic trace from a website to assess our algorithm. The experimental results show that MFF can produce a larger energy reduction than the existing algorithms for an identical SLA. We fully justify our research as a good example for the emerging cloud.
KW - Cloud computing
KW - Content distribution network
KW - Energy efficiency
KW - Service level agreement
UR - http://www.scopus.com/inward/record.url?scp=85041679520&partnerID=8YFLogxK
U2 - 10.1016/j.future.2018.01.057
DO - 10.1016/j.future.2018.01.057
M3 - Article
AN - SCOPUS:85041679520
SN - 0167-739X
VL - 83
SP - 347
EP - 357
JO - Future Generation Computer Systems
JF - Future Generation Computer Systems
ER -