TY - JOUR
T1 - Effects of aluminum content on thermoelectric performance of AlxCoCrFeNi high-entropy alloys
AU - Hasan, Md Abdullah Al
AU - Wang, Jiaqi
AU - Shin, Seungha
AU - Gilbert, Dustin A.
AU - Liaw, Peter K.
AU - Tang, Nan
AU - Liyanage, W. L.Namila C.
AU - Santodonato, Louis
AU - DeBeer-Schmitt, Lisa
AU - Butch, Nicholas P.
N1 - Publisher Copyright:
© 2021 Elsevier B.V.
PY - 2021/11/25
Y1 - 2021/11/25
N2 - Introducing a non-regular distribution in the mass and bonding by including distinctly different elements can reduce the phonon transport even within structurally well-ordered materials. These distributions are a quality of all high-entropy alloys (HEAs), however the inclusion of aluminum in AlxCoCrFeNi is particularly impactful due to the large mismatch in atomic mass with other components. The resultant low phonon conductivity is a requirement for high thermoelectric performance, motivating the investigation of the effects of Al content on phonon transport as well as other thermoelectric properties. This work examines the phonon and electron transport and thermoelectric conversion properties with various Al contents (0 ≤ xAl ≤ 2) in this Cantor alloy using first-principles calculations, molecular dynamics, and semi-classical Boltzmann transport theory. The calculated phonon density of states and thermoelectric properties present reasonable agreements with experiments, including neutron scattering. A large reduction of phonon conductivity (kL) is observed even with low xAls, which we attribute to effective phonon scatterings by the large mass mismatch. However, its temperature dependence is not significant, demonstrating a minor contribution of interphonon scattering. In contrast, electrical conductivity (σ) and Seebeck coefficient (S) increase with temperature at higher xAls with body-centered cubic structures. Therefore, the thermoelectric figure of merit (ZT) of AlxCoCrFeNi HEAs is enhanced by increasing the Al content mainly due to the increase of the thermoelectric power factor (σS2) at high temperatures, while at low temperatures the phonon-scattering enhancement by mass mismatch is also important.
AB - Introducing a non-regular distribution in the mass and bonding by including distinctly different elements can reduce the phonon transport even within structurally well-ordered materials. These distributions are a quality of all high-entropy alloys (HEAs), however the inclusion of aluminum in AlxCoCrFeNi is particularly impactful due to the large mismatch in atomic mass with other components. The resultant low phonon conductivity is a requirement for high thermoelectric performance, motivating the investigation of the effects of Al content on phonon transport as well as other thermoelectric properties. This work examines the phonon and electron transport and thermoelectric conversion properties with various Al contents (0 ≤ xAl ≤ 2) in this Cantor alloy using first-principles calculations, molecular dynamics, and semi-classical Boltzmann transport theory. The calculated phonon density of states and thermoelectric properties present reasonable agreements with experiments, including neutron scattering. A large reduction of phonon conductivity (kL) is observed even with low xAls, which we attribute to effective phonon scatterings by the large mass mismatch. However, its temperature dependence is not significant, demonstrating a minor contribution of interphonon scattering. In contrast, electrical conductivity (σ) and Seebeck coefficient (S) increase with temperature at higher xAls with body-centered cubic structures. Therefore, the thermoelectric figure of merit (ZT) of AlxCoCrFeNi HEAs is enhanced by increasing the Al content mainly due to the increase of the thermoelectric power factor (σS2) at high temperatures, while at low temperatures the phonon-scattering enhancement by mass mismatch is also important.
KW - First-principles calculations
KW - High-entropy alloy
KW - Mass mismatch effects
KW - Molecular dynamics
KW - Thermoelectric property
UR - http://www.scopus.com/inward/record.url?scp=85109146886&partnerID=8YFLogxK
U2 - 10.1016/j.jallcom.2021.160811
DO - 10.1016/j.jallcom.2021.160811
M3 - Article
AN - SCOPUS:85109146886
SN - 0925-8388
VL - 883
JO - Journal of Alloys and Compounds
JF - Journal of Alloys and Compounds
M1 - 160811
ER -