TY - JOUR
T1 - DSGA-Net
T2 - Deeply separable gated transformer and attention strategy for medical image segmentation network
AU - Sun, Junding
AU - Zhao, Jiuqiang
AU - Wu, Xiaosheng
AU - Tang, Chaosheng
AU - Wang, Shuihua
AU - Zhang, Yudong
N1 - Publisher Copyright:
© 2023 The Author(s)
PY - 2023/5
Y1 - 2023/5
N2 - To address the problems of under-segmentation and over-segmentation of small organs in medical image segmentation. We present a novel medical image segmentation network model with Depth Separable Gating Transformer and a Three-branch Attention module (DSGA-Net). Firstly, the model adds a Depth Separable Gated Visual Transformer (DSG-ViT) module into its Encoder to enhance (i) the contextual links among global, local, and channels and (ii) the sensitivity to location information. Secondly, a Mixed Three-branch Attention (MTA) module is proposed to increase the number of features in the up-sampling process. Meanwhile, the loss of feature information is reduced when restoring the feature image to the original image size. By validating Synapse, BraTs2020, and ACDC public datasets, the Dice Similarity Coefficient (DSC) of the results of DSGA-Net reached 81.24%,85.82%, and 91.34%, respectively. Moreover, the Hausdorff Score (HD) decreased to 20.91% and 5.27% on the Synapse and BraTs2020. There are 10.78% and 0.69% decreases compared to the Baseline TransUNet. The experimental results indicate that DSGA-Net achieves better segmentation than most advanced methods.
AB - To address the problems of under-segmentation and over-segmentation of small organs in medical image segmentation. We present a novel medical image segmentation network model with Depth Separable Gating Transformer and a Three-branch Attention module (DSGA-Net). Firstly, the model adds a Depth Separable Gated Visual Transformer (DSG-ViT) module into its Encoder to enhance (i) the contextual links among global, local, and channels and (ii) the sensitivity to location information. Secondly, a Mixed Three-branch Attention (MTA) module is proposed to increase the number of features in the up-sampling process. Meanwhile, the loss of feature information is reduced when restoring the feature image to the original image size. By validating Synapse, BraTs2020, and ACDC public datasets, the Dice Similarity Coefficient (DSC) of the results of DSGA-Net reached 81.24%,85.82%, and 91.34%, respectively. Moreover, the Hausdorff Score (HD) decreased to 20.91% and 5.27% on the Synapse and BraTs2020. There are 10.78% and 0.69% decreases compared to the Baseline TransUNet. The experimental results indicate that DSGA-Net achieves better segmentation than most advanced methods.
KW - Depth separable
KW - Gated attention mechanism
KW - Medical image segmentation
KW - Transformer
UR - http://www.scopus.com/inward/record.url?scp=85152746846&partnerID=8YFLogxK
U2 - 10.1016/j.jksuci.2023.04.006
DO - 10.1016/j.jksuci.2023.04.006
M3 - Article
AN - SCOPUS:85152746846
SN - 1319-1578
VL - 35
JO - Journal of King Saud University - Computer and Information Sciences
JF - Journal of King Saud University - Computer and Information Sciences
IS - 5
M1 - 101553
ER -