DouRN: Improving DouZero by Residual Neural Networks

Yiquan Chen, Yingchao Lyu, Di Zhang*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

Deep reinforcement learning has made significant progress in games with imperfect information, but its performance in the card game Doudizhu (Chinese Poker/Fight the Landlord) remains unsatisfactory. Doudizhu is different from conventional games as it involves three players and combines elements of cooperation and confrontation, resulting in a large state and action space. In 2021, a Doudizhu program called DouZero [8] surpassed previous models without prior knowledge by utilizing traditional Monte Carlo methods and multilayer perceptrons. Building on this work, our study incorporates residual networks into the model, explores different architectural designs, and conducts multi-role testing. Our findings demonstrate that this model significantly improves the winning rate within the same training time. Additionally, we introduce a call scoring system to assist the agent in deciding whether to become a landlord. With these enhancements, our model consistently outperforms the existing version of DouZero and even experienced human players.11The source code is available at https://github.com/Yingchaol/Douzero_Resnet.git.

Original languageEnglish
Title of host publicationProceedings - 2023 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2023
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages96-99
Number of pages4
ISBN (Electronic)9798350308693
DOIs
Publication statusPublished - 2023
Event15th International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2023 - Jiangsu, China
Duration: 2 Nov 20234 Nov 2023

Publication series

NameProceedings - 2023 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2023

Conference

Conference15th International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, CyberC 2023
Country/TerritoryChina
CityJiangsu
Period2/11/234/11/23

Keywords

  • DouDizhu
  • Monte Carlo Methods
  • Reinforcement Learning
  • Residual Neural Networks

Fingerprint

Dive into the research topics of 'DouRN: Improving DouZero by Residual Neural Networks'. Together they form a unique fingerprint.

Cite this