Decoding Lower Limb Movement Speed: Unraveling the Disparities Between Motor Imagery and Relaxation

Yuqing Chen, Mengjie Huang, Su Wang, Hao Su, Yuting Zheng, Rui Yang*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

Abstract

This study investigates the feasibility and efficacy of decoding lower limb movement speed through the examination of differences between motor imagery and relaxation states. Electroencephalography (EEG) signals are utilized as the input data source, and commonly used machine learning approaches are employed for classifying imagined lower limb movement speed. Healthy individuals without lower limb motor impairments participate in the experiment, and their EEG signals are recorded using Emotive's 32-channel gel electrode EEG cap EPOC FLEX. Preprocessing and feature extraction techniques are applied to the collected EEG data to develop a specialized classification model. Results indicate significant differences in EEG signals between imagined lower limb movement speed and relaxation states. Ten-fold cross-validation confirms the reliability and accuracy of the classification model, achieving above-chance classification accuracies. The findings provide valuable insights for the development of brain-computer interface systems, rehabilitation therapies, and applications related to lower limb movement. This study establishes a foundation for further exploration in decoding lower limb movement speed.

Original languageEnglish
Title of host publicationArtificial Intelligence and Human-Computer Interaction - Proceedings of the 1st International Conference, ArtInHCI 2023
EditorsYalan Ye, Patrick Siarry
PublisherIOS Press BV
Pages249-255
Number of pages7
ISBN (Electronic)9781643685083
DOIs
Publication statusPublished - 18 Mar 2024
Event1st International Conference on Artificial Intelligence and Human-Computer Interaction, ArtInHCI 2023 - Virtual, Online, China
Duration: 27 Oct 202329 Oct 2023

Publication series

NameFrontiers in Artificial Intelligence and Applications
Volume385
ISSN (Print)0922-6389
ISSN (Electronic)1879-8314

Conference

Conference1st International Conference on Artificial Intelligence and Human-Computer Interaction, ArtInHCI 2023
Country/TerritoryChina
CityVirtual, Online
Period27/10/2329/10/23

Keywords

  • brain-computer interface
  • Decoding lower limb movement speed
  • electroencephalography
  • machine learning
  • motor imagery

Fingerprint

Dive into the research topics of 'Decoding Lower Limb Movement Speed: Unraveling the Disparities Between Motor Imagery and Relaxation'. Together they form a unique fingerprint.

Cite this