Covid-19 Detection by Wavelet Entropy and Self-adaptive PSO

Wei Wang, Shui Hua Wang, Juan Manuel Górriz, Yu Dong Zhang*

*Corresponding author for this work

Research output: Chapter in Book or Report/Conference proceedingConference Proceedingpeer-review

3 Citations (Scopus)

Abstract

The rapid global spread of COVID-19 disease poses a huge threat to human health and the global economy. The rapid increase in the number of patients diagnosed has strained already scarce healthcare resources to track and treat Covid-19 patients in a timely and effective manner. The search for a fast and accurate way to diagnose Covid-19 has attracted the attention of many researchers. In our study, a deep learning framework for the Covid-19 diagnosis task was constructed using wavelet entropy as a feature extraction method and a feedforward neural network classifier, which was trained using an adaptive particle swarm algorithm. The model achieved an average sensitivity of 85.14% ± 2.74%, specificity of 86.76% ± 1.75%, precision of 86.57% ± 1.36%, accuracy of 85.95% ± 1.14%, and F1 score of 85.82% ± 1.30%, Matthews correlation coefficient of 71.95 ± 2.26%, and Fowlkes-Mallows Index of 85.83% ± 1.30%. Our experiments validate the usability of wavelet entropy-based feature extraction methods in the medical image domain and show the non-negligible impact of different optimisation algorithms on the models by comparing them with other models.

Original languageEnglish
Title of host publicationArtificial Intelligence in Neuroscience
Subtitle of host publicationAffective Analysis and Health Applications - 9th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022, Proceedings
EditorsJosé Manuel Ferrández Vicente, José Ramón Álvarez-Sánchez, Félix de la Paz López, Hojjat Adeli
PublisherSpringer Science and Business Media Deutschland GmbH
Pages125-135
Number of pages11
ISBN (Print)9783031062414
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event9th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022 - Puerto de la Cruz, Spain
Duration: 31 May 20223 Jun 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13258 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference9th International Work-Conference on the Interplay Between Natural and Artificial Computation, IWINAC 2022
Country/TerritorySpain
CityPuerto de la Cruz
Period31/05/223/06/22

Keywords

  • COVID-19
  • Self-adaptive particle swarm optimization
  • Wavelet entropy

Fingerprint

Dive into the research topics of 'Covid-19 Detection by Wavelet Entropy and Self-adaptive PSO'. Together they form a unique fingerprint.

Cite this