Combination of Disulfiram and Copper-Cysteamine Nanoparticles for an Enhanced Antitumor Effect on Esophageal Cancer

Yan Chang, Fang Wu, Nil Kanatha Pandey, Lalit Chudal, Meiying Xing, Xiaoli Zhang, Linh Nguyen, Xian Liu, J. Ping Liu, Wei Chen*, Zui Pan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

20 Citations (Scopus)

Abstract

Esophageal cancer (EC) is the sixth leading cause of cancer deaths worldwide with a low 5 year survival rate. More effective chemotherapeutic drugs, either new or repurposing ones, are urgently needed. Disulfiram (DSF) is a safe and public domain drug for alcohol addiction treatment and later shown to have anticancer capability, especially when administrated together with copper. The present study is to test the hypothesis that developed copper-cysteamine (Cu-Cy) nanoparticles (NPs) can enhance the antitumor effect of DSF on esophageal cancer with a reduced risk of copper poisoning. Our results showed that Cu-Cy NPs could greatly facilitate DSF to inhibit cell proliferation in cultured human esophageal cancer cells. Interestingly, the combined inhibitory function could be further enhanced when DSF and Cu-Cy NPs were present at an optimal molar ratio of 1:4. The results of the change in physical color, UV-vis absorption and fluorescence spectra, X-ray diffraction patterns, and FTIR spectra from a mixture of DSF and Cu-Cy NPs suggest a possible reaction between DSF and Cu-Cy NPs and the formation of a complex. Furthermore, cellular mechanistic studies revealed that the combination of DSF and Cu-Cy NPs resulted in reactive oxygen species accumulation and blocked nuclear translocation of NF-κB (p65) in esophageal cancer cells. Moreover, in xenograft nude mice, combined administration of DSF and Cu-Cy NPs greatly inhibited tumor growth without noticeable histological toxicity, while any single agent at the same doses presented no inhibitory function. Together, this study demonstrates an effective anticancer function of combined treatment of DSF and Cu-Cy NPs in vitro and in vivo, which could be a promising chemotherapy for esophageal cancer patients.

Original languageEnglish
Pages (from-to)7147-7157
Number of pages11
JournalACS Applied Bio Materials
Volume3
Issue number10
DOIs
Publication statusPublished - 19 Oct 2020
Externally publishedYes

Keywords

  • apoptosis
  • esophageal squamous cell carcinoma
  • NF-κB
  • proliferation
  • reactive oxygen species (ROS)

Fingerprint

Dive into the research topics of 'Combination of Disulfiram and Copper-Cysteamine Nanoparticles for an Enhanced Antitumor Effect on Esophageal Cancer'. Together they form a unique fingerprint.

Cite this