Boron-modified perhydropolysilazane towards facile synthesis of amorphous SiBN ceramic with excellent thermal stability

Ying Zhan, Wei Li, Tianshu Jiang, Claudia Fasel, Emmanuel Ricohermoso, Jan Bernauer, Zhaoju Yu*, Zhenghao Wu*, Florian Müller-Plathe, Leopoldo Molina-Luna, Ralf Grottenmüller, Ralf Riedel

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

15 Citations (Scopus)


SiBN ceramics are widely considered to be the most promising material for microwave-transparent applications in harsh environments owing to its excellent thermal stability and low dielectric constant. This work focuses on the synthesis and ceramization of single-source precursors for the preparation of SiBN ceramics as well as the investigation of the corresponding microstructural evolution at high temperatures including molecular dynamic simulations. Carbon- and chlorine-free perhydropolysilazanes were reacted with borane dimethyl sulfide complex at different molar ratios to synthesize single-source precursors, which were subsequently pyrolyzed and annealed under N2 atmosphere (without ammonolysis) to prepare SiBN ceramics at 1100, 1200, and 1300 °C with high ceramic yield in contrast to previously widely-used ammonolysis synthesis process. The obtained amorphous SiBN ceramics were shown to have remarkably improved thermal stability and oxidation resistance compared to amorphous silicon nitride. Particularly, the experimental results have been combined with molecular dynamics simulation to further study the amorphous structure of SiBN and the atomic-scale diffusion behavior of Si, B, and N at 1300 °C. Incorporation of boron into the Si—N network is found to suppress the crystallization of the formed amorphous silicon nitride and hence improves its thermal stability in N2 atmosphere. [Figure not available: see fulltext.]

Original languageEnglish
Pages (from-to)1104-1116
Number of pages13
JournalJournal of Advanced Ceramics
Issue number7
Publication statusPublished - Jul 2022
Externally publishedYes


  • SiBN
  • crystallization
  • molecular dynamics
  • oxidation resistance
  • polymer-derived ceramics (PDCs)


Dive into the research topics of 'Boron-modified perhydropolysilazane towards facile synthesis of amorphous SiBN ceramic with excellent thermal stability'. Together they form a unique fingerprint.

Cite this