BINARY-UNCODED IMAGE and VIDEO COMPRESSION USING SPIHT-ZTR CODING

Wai Chong Chia, Li Wern Chew, Li Minn Ang, Kah Phooi Seng

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

When the embedded zerotree wavelet (EZW) algorithm was first introduced by Shapiro, four types of symbols (zerotree (ZTR), isolated zero (IZ), positive (POS), and negative (NEG)) were used to represent the tree structure. An improved version of EZW, the set partitioning in hierarchical trees (SPIHT) algorithm was later proposed by Said and Pearlman. SPIHT removed the ZTR symbol, while keeping the other three symbols in a slightly different form. In the SPIHT algorithm, the coding of the parent node is isolated from the coding of its descendants in the tree structure. Therefore, it is no longer possible to encode the parent and its descendants with a single symbol. When both the parent and its descendants are insignificant (forming a degree-0 zerotree (ZTR)), it cannot be represented using a ZTR symbol. From our observation, the number of degree-0 ZTRs can occur very frequently not only in natural and synthesis images, but also in video sequences. Hence, the ZTR symbol is reintroduced into SPIHT in our proposed SPIHT-ZTR algorithm. In order to achieve this, the order of sending the output bits was modified to accommodate the use of ZTR symbol. Moreover, the significant offspring were also encoded using a slightly different method to further enhance the performance. The SPIHT-ZTR algorithm was evaluated on images and video sequences. From the simulation results, the performance of binary-uncoded SPIHT-ZTR is higher than binary-uncoded SPIHT and close to SPIHT with adaptive arithmetic coding.

Original languageEnglish
Pages (from-to)415-437
Number of pages23
JournalInternational Journal of Image and Graphics
Volume11
Issue number3
DOIs
Publication statusPublished - 1 Jul 2011
Externally publishedYes

Keywords

  • EZW
  • SPIHT
  • arithmetic coding
  • image compression
  • video compression

Cite this