Automatic Pavement Defect Detection and Classification Using RGB-Thermal Images Based on Hierarchical Residual Attention Network

Cheng Chen, Sindhu Chandra, Hyungjoon Seo*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

7 Citations (Scopus)

Abstract

A convolutional neural network based on an improved residual structure is proposed to implement a lightweight classification model for the recognition of complex pavement conditions, which uses RGB-thermal as input and embeds an attention module to adjust the spatial, as well as channel, information of the images. The best prediction accuracy of the proposed model is 98.88%, while the RGB-thermal is used as input and an attention mechanism is used. The attention mechanism increases the attention to detail of the image and regulates the use of image channels, which enhances the final performance of the model. It is also compared with state-of-the-art (SOTA) deep learning models, indicating our model has fewer parameters, shorter training time, and higher recognition accuracy compared to existing image classification models. A visualization method incorporating gradient-weighted class activation mapping (Grad-CAM) is proposed to analyze the classification results, comparing the data the model learns from the images under different input data.

Original languageEnglish
Article number5781
JournalSensors
Volume22
Issue number15
DOIs
Publication statusPublished - Aug 2022

Keywords

  • attention mechanism
  • deep learning
  • hierarchical residual attention network
  • pavement defect classification
  • visual interpretation

Fingerprint

Dive into the research topics of 'Automatic Pavement Defect Detection and Classification Using RGB-Thermal Images Based on Hierarchical Residual Attention Network'. Together they form a unique fingerprint.

Cite this